is a terminal Ediacaran tubular, benthic fossil of debated morphology, composition, and biological affinity. Here, we show that had a biomineralized skeleton, with a bilayered construction of imbricated calcareous plates and rings (sclerites) yielding a cataphract organization, that enhanced flexibility. Each sclerite likely possessed a laminar microfabric with consistent crystallographic orientation, within an organic matrix. Original aragonitic mineralogy is supported by relict aragonite and elevated Sr (mean = ca. 11,800 ppm in central parts of sclerites). In sum, the presence of a polarisation axis, sclerites with a laminar microfabric, and a cataphract skeletal organization reminiscent of early Cambrian taxa, are all consistent with, but not necessarily indicative of, a bilaterian affinity. A cataphract skeleton with an inferred complex microstructure confirms the presence of controlled biomineralization in metazoans by the terminal Ediacaran, and offers insights into the evolution of development and ecology at the root of the 'Cambrian radiation'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763863 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.105676 | DOI Listing |
Int J Mol Sci
December 2024
Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland.
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Cultural Heritage and Museology, Zhejiang University, 310028, Hangzhou, Zhejiang Province, P.R. China.
For large, open-air lithic cultural heritage, colonization is an inevitable process. This study examines the dual impact of colonization on the Leshan Giant Buddha's sandstone monuments, focusing on both biodeterioration and protection. Over three years, we conducted field surveys and monitored biocrusts (bryophytes, lichens, and biofilms) on these monuments, observing significant biodeterioration primarily due to mechanical exfoliation and acid corrosion.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Oral Implantology, The Affiliated Stomatology Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, Jiangxi, China.
BACKGROUND This study included 32 patients with single missing teeth and alveolar bone defects and aimed to compare outcomes from guided bone regeneration with a gelatin/polylactic acid (GT/PLA) barrier membrane and a Guidor® bioresorbable matrix barrier dental membrane. MATERIAL AND METHODS A total of 32 participants were recruited in the clinical study, with single missing teeth and alveolar bone defects, requiring guided bone regeneration (32 missing teeth in total). They were randomly divided into the GT/PLA membrane group (experimental) and Guidor® membrane group (control) by the envelope method (n=16).
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, People's Republic of China.
Cranial defect repair remains a significant challenge in neurosurgery, and designing material complexes that can support bone regeneration while minimizing complications such as infection and inflammation could help alleviate this clinical challenge. This study presents a photothermal hydrogel complex with a controlled rapid gelation process, PDA-G-A-H, which integrates photothermal polydopamine nanoparticles (PDA NPs) with gentamycin (G) and alendronate acid (A). Furthermore, the incorporation of the injectable hydrogel Pluronic F127 and collagen (H) made this composite hydrogel (PDA-G-A-H) suitable for the multifaceted needs of cranial defects.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China.
Tumor therapy has advanced significantly in recent years, but tumor cells can still evade and survive the treatment through various mechanisms. Notably, tumor cells use autophagy to sustain viability by removing impaired mitochondria and clearing excess reactive oxygen species (ROS). In this study, the aim is to amplify intracellular oxidative stress by inhibiting mitochondrial autophagic flux.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!