Label-free detection and digital counting of nanometer-scaled objects such as nanoparticles, viruses, extracellular vesicles, and protein molecules enable a wide range of applications in cancer diagnostics, pathogen detection, and life science research. The contrast of interferometric scattering microscopy is amplified through a photonic crystal surface, upon which scattered light from an object combines with illumination from a monochromatic plane wave source. The use of a photonic crystal substrate for interference scattering microscopy results in reduced requirements for high-intensity lasers or oil-immersion objectives, thus opening a pathway toward instruments that are more suitable for environments outside the optics laboratory. Here, we report the design, implementation, and characterization of a compact Photonic Resonator Interferometric Scattering Microscope (PRISM) designed for point-of-use environments and applications. The instrument incorporates two innovative elements that facilitate operation on a desktop in ordinary laboratory environments by users that do not have optics expertise. First, because scattering microscopes are extremely sensitive to vibration, we incorporated an inexpensive but effective solution of suspending the instrument's main components from a rigid metal framework using elastic bands, resulting in an average of 28.7 dBV reduction in vibration amplitude compared to an office desk. Second, an automated focusing module based on the principle of total internal reflection maintains the stability of image contrast over time and spatial position, facilitating automated data collection. In this work, we characterize the system's performance by measuring the contrast from gold nanoparticles with diameters in the 10-40 nm range and by observing various biological analytes, including HIV virus, SARS-CoV-2 virus, exosomes, and ferritin protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774210PMC
http://dx.doi.org/10.1101/2022.12.13.520266DOI Listing

Publication Analysis

Top Keywords

interferometric scattering
12
photonic resonator
8
resonator interferometric
8
scattering microscope
8
label-free detection
8
point-of-use environments
8
scattering microscopy
8
photonic crystal
8
scattering
5
photonic
4

Similar Publications

The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.

View Article and Find Full Text PDF

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample.

View Article and Find Full Text PDF

Sensing Thermophoretic Forces by Nanoplasmonic Actuators with Interferometric Scattering Readout.

Nano Lett

January 2025

Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States.

Article Synopsis
  • Noble metal nanoparticles (NPs), specifically 20 nm silver NPs, can generate heat and create temperature gradients when bound to a thin gold film, acting as both heat sources and optical sensors.
  • These temperature gradients produce thermophoretic forces that can manipulate the position of the NPs, affecting their equilibrium and leading to observable changes in their scattering signals.
  • Experimental results show a consistent decrease in the scattering signal of the NPs, indicating they are being drawn closer to the film due to the attractive forces generated by the temperature gradient, with power densities applied ranging from 1.40 to 4.80 kW/cm.
View Article and Find Full Text PDF

The Fucheng-1 (FC-1) satellite has successfully transitioned from its initial operational phase and is now undergoing a detailed performance assessment for time-series deformation monitoring. This study evaluates the surface deformation monitoring capabilities of the newly launched FC-1 satellite using the interferometric synthetic aperture radar (InSAR) technique, particularly in urban applications. By analyzing the observation data from 20 FC-1 scenes and 20 Sentinel-1 scenes, deformation velocity maps of a university in Mianyang city were obtained using persistent scatterer interferometry (PSI) and distributed scatterer interferometry (DSI) techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!