Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In addition to the common genogroup J IHNV, genogroup U has been newly discovered in China. However, there is no effective DNA vaccine to fight against this emerging genogroup U IHNV in China. In this study, DNA vaccines encoding the IHNV viral glycoprotein (G) gene of the GS2014 (genogroup J) and BjLL (genogroup U) strains isolated from northern China were successfully developed, which were identified by restriction analysis and IFA. The expression of the Mx-1 gene and G gene in the spleens and muscles of the injection site as well as the titers of the serum antibodies were measured to evaluate the vaccine efficacy by RT-qPCR and ELISA. We found that DNA vaccine immunization could activate Mx1 gene expression and upregulate G gene expression, and the mRNA levels of the Mx1 gene in the muscles were significantly higher than those in the spleens. Notably, DNA vaccine immunization might not promote the serum antibody in fish at the early stage of immunization. Furthermore, the efficacy of the constructed vaccines was tested in intra- and cross-genogroup challenges by a viral challenge in vivo. It seemed that the DNA vaccines were able to provide great immune protection against IHNV infection. In addition, the genogroup J IHNV-G DNA vaccine showed better immune efficacy than the genogroup U IHNV-G or divalent vaccine, which could provide cross-immune protection against the genogroup U IHNV challenge. Therefore, this is the first study to construct an IHNV DNA vaccine using the G gene from an emerging genogroup U IHNV strain in China. The results provide great insight into the advances of new prophylactic strategies to fight both the genogroup J and U IHNV in China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780822 | PMC |
http://dx.doi.org/10.3390/v14122707 | DOI Listing |
Fish Shellfish Immunol
November 2024
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China. Electronic address:
Rainbow trout suffer from infectious hematopoietic necrosis virus (IHNV) outbreaks, which lead to massive mortality and huge economic loss worldwide. The approved commercial vaccine is used for the prevention of IHN in Canada. Given that Chinese domestic J-genotype isolates are different from North American IHNV isolates, the development of an effective DNA vaccine against Chinese J-genotype isolates is urgent.
View Article and Find Full Text PDFJ Med Virol
June 2024
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity.
View Article and Find Full Text PDFViruses
April 2024
U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA.
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (), but not in rainbow trout.
View Article and Find Full Text PDFMicrob Pathog
December 2023
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China. Electronic address:
Rainbow trout is one of the fastest-growing aquaculture species and infectious hematopoietic necrosis virus (IHNV) is endemic throughout almost all rainbow trout farms in China nowadays. In this study, IHNV GS21 was identified as the causative pathogen, which resulted in massive mortality of rainbow trout occurring in northwest China. GS21 isolate was propagated in Chinook salmon embryonic cell line (CHSE-214) and induced apparent cytopathic effects (CPE) at 3 days post-infection (dpi).
View Article and Find Full Text PDFVaccine
August 2023
Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea. Electronic address:
Vaccination procedures can be stressful for fish and can bring severe side effects. Therefore, vaccines that can minimize the number of administrations and maximize cross-protection against multiple serotypes, genotypes, or even different species would be highly advantageous. In the present study, we investigated the cross-protective ability of two types of vaccines - viral hemorrhagic septicemia virus (VHSV) G protein-expressing DNA vaccine and G gene-deleted single-cycle VHSV genotype IVa (rVHSV-ΔG) vaccine - against both VHSV genotype Ia and infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!