A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Table-Based Adaptive Digital Phase-Locked Loop for GNSS Receivers Operating in Moon Exploration Missions. | LitMetric

Table-Based Adaptive Digital Phase-Locked Loop for GNSS Receivers Operating in Moon Exploration Missions.

Sensors (Basel)

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea.

Published: December 2022

An adaptive digital phase-locked loop (DPLL) continually adjusts the noise bandwidth of the loop filter in global navigation satellite system (GNSS) receivers to track signals by measuring the signal-to-noise ratio and/or dynamic stress. Such DPLLs have a relatively large amount of computational complexity compared with the conventional DPLL. A table-based adaptive DPLL is proposed that adjusts the noise bandwidth value by extracting it from the pre-generated table without additional calculations. The values of the noise bandwidth table are computed in an optimal manner in consideration of the thermal noise, oscillator phase noise, and dynamic stress error. The calculation method of the proper integration time to maintain the stability of the loop filter is presented. Additionally, the simulation is configured using the trajectory analysis results from the Moon exploration mission and shows that the proposed algorithm operates stably in harsh environments, while a conventional fixed bandwidth loop cannot. The proposed algorithm has a similar phase jitter performance to the existing adaptive DPLL algorithms and has an execution time that is approximately 2.4-5.4 times faster. It is verified that the proposed algorithm is computationally efficient while maintaining jitter performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785736PMC
http://dx.doi.org/10.3390/s222410001DOI Listing

Publication Analysis

Top Keywords

noise bandwidth
12
proposed algorithm
12
table-based adaptive
8
adaptive digital
8
digital phase-locked
8
phase-locked loop
8
gnss receivers
8
moon exploration
8
adjusts noise
8
bandwidth loop
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!