Brain-Computer Interface (BCI) is a technique that allows the disabled to interact with a computer directly from their brain. P300 Event-Related Potentials (ERP) of the brain have widely been used in several applications of the BCIs such as character spelling, word typing, wheelchair control for the disabled, neurorehabilitation, and smart home control. Most of the work done for smart home control relies on an image flashing paradigm where six images are flashed randomly, and the users can select one of the images to control an object of interest. The shortcoming of such a scheme is that the users have only six commands available in a smart home to control. This article presents a symbol-based P300-BCI paradigm for controlling home appliances. The proposed paradigm comprises of a 12-symbols, from which users can choose one to represent their desired command in a smart home. The proposed paradigm allows users to control multiple home appliances from signals generated by the brain. The proposed paradigm also allows the users to make phone calls in a smart home environment. We put our smart home control system to the test with ten healthy volunteers, and the findings show that the proposed system can effectively operate home appliances through BCI. Using the random forest classifier, our participants had an average accuracy of 92.25 percent in controlling the home devices. As compared to the previous studies on the smart home control BCIs, the proposed paradigm gives the users more degree of freedom, and the users are not only able to control several home appliances but also have an option to dial a phone number and make a call inside the smart home. The proposed symbols-based smart home paradigm, along with the option of making a phone call, can effectively be used for controlling home through signals of the brain, as demonstrated by the results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781197 | PMC |
http://dx.doi.org/10.3390/s222410000 | DOI Listing |
Int J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.
View Article and Find Full Text PDFNat Commun
January 2025
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, China.
Nat Commun
January 2025
Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
ACS Appl Mater Interfaces
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!