Tribocorrosion Behavior of Micro/Nanoscale Surface Coatings.

Sensors (Basel)

Department of Biology, Lamar University, Beaumont, TX 77710, USA.

Published: December 2022

Wear and corrosion are common issues of material degradation and failure in industrial appliances. Wear is a damaging process that can impact surface contacts and, more specifically, can cause the loss and distortion of material from a surface because of the contacting object's mechanical action via motion. More wear occurs during the process of corrosion, in which oxide particles or debris are released from the contacting material. These types of wear debris and accumulated oxide particles released during corrosion cause a combination of wear-corrosion processes. Bringing together the fields of tribology and corrosion research, tribocorrosion is a field of study which deals with mechanical and electrochemical interactions between bodies in motion. More specifically, it is the study of mechanisms caused by the combined effects of mechanical stress and chemical/electrochemical interactions with the environment. Tribocorrosion testing methods provide new opportunities for studying the electrochemical nature of corrosion combined with mechanical loading to establish a synergistic relationship between corrosion and wear. To improve tribological, mechanical, and anti-corrosion performances, several surface modification techniques are being applied to develop functional coatings with micro/nano features. This review of the literature explores recent and enlightening research into the tribocorrosive properties of micro/nano coatings. It also looks at recent discussions of the most common experimental methods and some newer, promising experimental methods in tribocorrosion to elucidate their applications in the field of micro/nano coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786041PMC
http://dx.doi.org/10.3390/s22249974DOI Listing

Publication Analysis

Top Keywords

oxide particles
8
micro/nano coatings
8
experimental methods
8
corrosion
6
wear
5
mechanical
5
tribocorrosion
4
tribocorrosion behavior
4
behavior micro/nanoscale
4
surface
4

Similar Publications

The World Health Organization has confirmed that asbestos fibres are carcinogenic, claiming that asbestos-related diseases should be eradicated worldwide. Actinolite, amosite, anthophyllite, chrysotile, crocidolite, and tremolite are regulated asbestiform mineral phases. However, in nature, asbestos minerals occur either in a fibrous and asbestiform (original morphology characterized by high length-to-width ratio and provided of high tensile strength and flexibility) or fibrous but not asbestiform appearance.

View Article and Find Full Text PDF

Degradation of antibiotic pollutants and simultaneous CO capture over hollow MnO/light/peroxymonosulfate (PMS)-CaO system.

J Colloid Interface Sci

January 2025

School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

Antibiotic organic pollutants not only pose a significant threat to human health but also generate a large amount of carbon dioxide (CO) during the treatment process of advanced oxidation processes (AOPs). Herein, the antibiotics aqueous solution was firstly degraded and mineralized by light-assisted peroxymonosulfate (PMS) activation over hollow manganese dioxide (MnO) catalyst and then the corresponding released CO was effectively captured by calcium oxide (CaO) particles in the same sealed reactor, achieving wastewater treatment with zero carbon releasing. Under simulated light conditions, hollow MnO is excited to generate electron-hole pairs.

View Article and Find Full Text PDF

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!