Strain Transfer Mechanisms and Mechanical Properties of Optical Fiber Cables.

Sensors (Basel)

Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.

Published: December 2022

Understanding the strain transfer mechanism is required to interpret strain sensing results for fiber optic cables. The strain transfer mechanism for fiber optic cables embedded in cementitious materials has yet to be thoroughly investigated experimentally. Interpretation of fiber optic sensing results is of particular concern when there is a displacement discontinuity. This study investigates the strain transfer mechanism for different types of fiber optic cables while embedded in concrete cubes, sustaining a boundary condition which features a displacement discontinuity. The strain transfer mechanisms for different cables are compared under increasing strain levels. Under cyclic loading, the nonlinear behavior of the force-displacement relation and of the strain distribution in the fiber optic cable are discussed. The mechanical properties of the fiber optic cables are presented and discussed. A parameter is proposed to quantify the strain transfer length. The results of this study will assist researchers and engineers to select appropriate cables for strain sensing and interpret the fiber optic sensing results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782109PMC
http://dx.doi.org/10.3390/s22249966DOI Listing

Publication Analysis

Top Keywords

fiber optic
28
strain transfer
24
optic cables
16
transfer mechanism
12
strain
10
transfer mechanisms
8
mechanical properties
8
fiber
8
strain sensing
8
cables strain
8

Similar Publications

This study offers a comprehensive analysis of the Perturbed Schrödinger -Hirota Equation (PSHE), crucial for understanding soliton dynamics in modern optical communication systems. We extended the traditional Nonlinear Schrödinger Equation (NLSE) to include higher-order nonlinearities and spatiotemporal dispersion, capturing the complexities of light pulse propagation. Employing the modified auxiliary equation method and Adomian Decomposition Method (ADM), we derived a spectrum of exact traveling wave solutions, encompassing exponential, rational, trigonometric, and hyperbolic functions.

View Article and Find Full Text PDF

We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio.

View Article and Find Full Text PDF

Objective: To evaluate and compare the accuracy of detection methods for the diagnosis of secondary caries around direct restorations in posterior teeth.

Data: Accuracy parameters including sensitivity, specificity, diagnostic odds ratio (DOR), area under curve (AUC), and partial AUC (pAUC) are generated from studies assessing the accuracy of detection methods for secondary caries.

Sources: Publications from PubMed, Web of Science, Scopus, Medline, EMBASE and Cochrane Library databases.

View Article and Find Full Text PDF

Accelerated Epigenetic Aging is Associated with Faster Glaucoma Progression: A DNA Methylation Study.

Ophthalmology

December 2024

John P. Hussman Institute for Human Genomics, University of Miami, FL; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, FL.

Purpose: To investigate the association between epigenetic age acceleration and glaucoma progression.

Design: Retrospective cohort study.

Participants: 100 primary open-angle glaucoma (POAG) patients with fast progression and 100 POAG patients with slow progression.

View Article and Find Full Text PDF

Revisiting hydrogen peroxide as radiosensitizer for solid tumor cells.

Radiother Oncol

December 2024

Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium. Electronic address:

Background And Purpose: Tumor hypoxia is the principal cause of clinical radioresistance. Despite its established role as radiosensitizer, hydrogen peroxide (HO) encounters clinical limitations due to stability and toxicity concerns. Recent advancements in drug delivery combine HO with sodium hyaluronate (SH), enabling intratumoral administration of HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!