Numerous diseases such as hemorrhage, sepsis or cardiogenic shock induce a heterogeneous perfusion of the capillaries. To detect such alterations in the human blood flow pattern, diagnostic devices must provide an appropriately high spatial resolution. Shifted position-diffuse reflectance imaging (SP-DRI) has the potential to do so; it is an all-optical diagnostic technique. So far, SP-DRI has mainly been developed using Monte Carlo simulations. The present study is therefore validating this algorithm experimentally on realistic optical phantoms with thread structures down to 10 μm in diameter; a SP-DRI sensor prototype was developed and realized by means of additive manufacturing. SP-DRI turned out to be functional within this experimental framework. The position of the structures within the optical phantoms become clearly visible using SP-DRI, and the structure thickness is reflected as modulation in the SP-DRI signal amplitude; this performed well for a shift along the axis as well as along the axis. Moreover, SP-DRI successfully masked the pronounced influence of the illumination cone on the data. The algorithm showed significantly superior to a mere raw data inspection. Within the scope of the study, the constructive design of the SP-DRI sensor prototype is discussed and potential for improvement is explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783365 | PMC |
http://dx.doi.org/10.3390/s22249880 | DOI Listing |
Magn Reson Med
January 2025
MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.
Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States.
Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.
View Article and Find Full Text PDFRadiol Phys Technol
January 2025
Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, India.
The estimation of peripheral dose (PD) is vital in cancer patients with long life expectancy. Assessment of PD to radiosensitive organs is important to determine the possible risk of late effects. An attempt has been made to assess the peripheral dose using optically stimulated luminescence dosimeter (OSLD) with megavoltage photon beams as a function of field size, depth, energy, and distance from the field edge.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, 1050 Brussels, Belgium.
Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
College of Optometry, University of Houston, Houston, TX, USA.
Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.
Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!