Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the advances in sensing technologies, sensor networks became the core of several different networks, including the Internet of Things (IoT) and drone networks. This led to the use of sensor networks in many critical applications including military, health care, and commercial applications. In addition, sensors might be mobile or stationary. Stationary sensors, once deployed, will not move; however, mobile nodes can move from one place to another. In most current applications, mobile sensors are used to collect data from stationary sensors. This raises many energy consumption challenges, including sensor networks' energy consumption, urgent messages transfer for real-time analysis, and path planning. Moreover, sensors in sensor networks are usually exposed to environmental parameters and left unattended. These issues, up to our knowledge, are not deeply covered in the current research. This paper develops a complete framework to solve these challenges. It introduces novel path planning techniques considering areas' priority, environmental parameters, and urgent messages. Consequently, a novel energy-efficient and reliable clustering algorithm is proposed considering the residual energy of the sensor nodes, the quality of wireless links, and the distance parameter representing the average intra-cluster distance. Moreover, it proposes a real-time, energy-efficient, reliable and environment-aware routing, taking into account the environmental data, link quality, delay, hop count, nodes' residual energy, and load balancing. Furthermore, for the benefit of the sensor networks research community, all proposed algorithms are formed in integer linear programming (ILP) for optimal solutions. All proposed techniques are evaluated and compared to six recent algorithms. The results showed that the proposed framework outperforms the recent algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004472 | PMC |
http://dx.doi.org/10.3390/s22249789 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!