Structure and Base Analysis of Receptive Field Neural Networks in a Character Recognition Task.

Sensors (Basel)

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia.

Published: December 2022

This paper explores extensions and restrictions of shallow convolutional neural networks with fixed kernels trained with a limited number of training samples. We extend the work recently done in research on Receptive Field Neural Networks (RFNN) and show their behaviour using different bases and step-by-step changes within the network architecture. To ensure the reproducibility of the results, we simplified the baseline RFNN architecture to a single-layer CNN network and introduced a deterministic methodology for RFNN training and evaluation. This methodology enabled us to evaluate the significance of changes using the (recently widely used in neural networks) Bayesian comparison. The results indicate that a change in the base may have less of an effect on the results than re-training using another seed. We show that the simplified network with tested bases has similar performance to the chosen baseline RFNN architecture. The data also show the positive impact of energy normalization of used filters, which improves the classification accuracy, even when using randomly initialized filters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784260PMC
http://dx.doi.org/10.3390/s22249743DOI Listing

Publication Analysis

Top Keywords

neural networks
16
receptive field
8
field neural
8
baseline rfnn
8
rfnn architecture
8
structure base
4
base analysis
4
analysis receptive
4
neural
4
networks
4

Similar Publications

Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data.

View Article and Find Full Text PDF

Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors.

PLoS One

January 2025

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.

This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

View Article and Find Full Text PDF

The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research.

View Article and Find Full Text PDF

Motivation: The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!