Unmanned aerial vehicle (UAV)-empowered communications have gained significant attention in recent years due to the promise of agile coverage provision for a large number of various mobile nodes on the ground and in three-dimensional (3D) space. Consequently, there is a need for efficient spectrum utilization in these dense aerial networks, which is characterized through radio environment maps (REMs), the construction of which is an important research area. Nevertheless, due to the difficult collection of radio frequency (RF) data, there are limited works that are based on real-world measurement campaigns. This paper presents a novel experimental setup that includes a constellation of three UAVs, the communication signals of which are measured by a software-defined radio (SDR) mounted on a separate UAV. It follows a trajectory that defines the REM's two-dimensional (2D) area on a plane, executed at four altitudes, to extend the REM to 3D. The measurements are then processed and their features (received mean power level, average difference of the mean power, percentage of meaningful correlations) are analyzed in the temporal, spatial, and frequency domains to determine the utilization of a 20 MHz band in the 2.4 GHz spectrum, as well as their variation with altitude. This analysis provides a base for research in reducing the amount of measurements (by identifying the regions of low and of high interest) and spectrum occupancy prediction for UAV-based communication coexistence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781936 | PMC |
http://dx.doi.org/10.3390/s22249705 | DOI Listing |
Integr Environ Assess Manag
January 2025
tier3 solutions GmbH, Leverkusen, Germany.
The revised EFSA 2023 Guidance on the risk assessment of plant protection products for birds and mammals emphasises vulnerability as a relevant criterion for focal species (FS) selection rather than prevalence. The EFSA 2023 Guidance suggests to rank FS candidates for each dietary group according to their expected exposure by estimating a species-specific daily dietary dose (DDD). Species experiencing higher exposure would be ranked as potentially more vulnerable and can be identified as FS candidates.
View Article and Find Full Text PDFPLoS One
January 2025
School of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.
View Article and Find Full Text PDFPLoS One
January 2025
School of Resources and Environment, Inner Mongolia University of Technology, Hohhot, China.
The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.
View Article and Find Full Text PDFHealth Phys
January 2025
Sublight Engineering PLLC, Arlington, VA.
This study investigated the implementation and impact of fifth-generation (5G) wireless millimeter wave (mmW) technology. 5G offers significant advancements over previous generations and supports additional frequency bands, including mmW, to enhance mobile broadband with ultra-reliable, low-latency communications, supporting a high volume of diverse communications. This technology is expected to enable billions of new connections in the Internet of Things (IoT), fostering innovations in various sectors including healthcare, manufacturing, and education.
View Article and Find Full Text PDFEcol Evol
January 2025
Dynamic Macroecology/Land Change Science Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland.
High-Arctic environments are facing an elevated pace of warming and increasing human activities, making them more susceptible to the introduction and spread of alien species. We investigated the role of human disturbance in facilitating the spread of a native plant () in a high-Arctic natural environment close to Isfjord Radio station and along adjacent hiking trails at Kapp Linné, Svalbard. We reconstructed the spatial pattern of the arrival and spread of at Kapp Linné by combining historical records of the species occurrence (1928-2018) with a contemporary survey of the plant abundance along the main hiking trail (2023 survey) and tested the relative effects of altitude and proximity to hiking trails on the species density via a generalised linear model (GLM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!