A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection Methods for Multi-Modal Inertial Gas Sensors. | LitMetric

Detection Methods for Multi-Modal Inertial Gas Sensors.

Sensors (Basel)

Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Published: December 2022

We investigate the rich potential of the multi-modal motions of electrostatically actuated asymmetric arch microbeams to design higher sensitivity and signal-to-noise ratio (SNR) inertial gas sensors. The sensors are made of fixed-fixed microbeams with an actuation electrode extending over one-half of the beam span in order to maximize the actuation of asymmetry. A nonlinear dynamic reduced-order model of the sensor is first developed and validated. It is then deployed to investigate the design of sensors that exploit the spatially complex and dynamically rich motions that arise due to veering and modal hybridization between the first symmetric and the first anti-symmetric modes of the beam. Specifically, we compare among the performance of four sensors implemented on a common platform using four detection mechanisms: classical frequency shift, conventional bifurcation, modal ratio, and differential capacitance. We find that frequency shift and conventional bifurcation sensors have comparable sensitivities. On the other hand, modal interactions within the veering range and modal hybridization beyond it offer opportunities for enhancing the sensitivity and SNR of bifurcation-based sensors. One method to achieve that is to use the modal ratio between the capacitances attributed to the symmetric and asymmetric modes as a detector, which increases the detection signal by three orders of magnitude compared to a conventional bifurcation sensor. We also present a novel sensing mechanism that exploits a rigid arm extending transversely from the arch beam mid-point and placed at equal distances between two side electrodes. It uses the asymmetry of the arch beam motions to induce rotary motions and realize a differential sensor. It is found to increase the detection signal by two orders of magnitude compared to a conventional bifurcation sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785199PMC
http://dx.doi.org/10.3390/s22249688DOI Listing

Publication Analysis

Top Keywords

conventional bifurcation
16
inertial gas
8
gas sensors
8
modal hybridization
8
frequency shift
8
shift conventional
8
modal ratio
8
detection signal
8
orders magnitude
8
magnitude compared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!