Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Text document clustering is one of the data mining techniques used in many real-world applications such as information retrieval from IoT Sensors data, duplicate content detection, and document organization. Swarm intelligence (SI) algorithms are suitable for solving complex text document clustering problems compared to traditional clustering algorithms. The previous studies show that in SI algorithms, particle swarm optimization (PSO) provides an effective solution to text document clustering problems. This PSO still needs to be improved to avoid the problems such as premature convergence to local optima. In this paper, an approach called dynamic sub-swarm of PSO (subswarm-PSO) is proposed to improve the results of PSO for text document clustering problems and avoid the local optimum by improving the global search capabilities of PSO. The results of this proposed approach were compared with the standard PSO algorithm and K-means algorithm. As for performance assurance, the evaluation metric purity is used with six benchmark data sets. The experimental results of this study show that our proposed subswarm-PSO algorithm performs best with high purity comparing the standard PSO and K-means traditional algorithms and also the execution time of subswarm-PSO comparatively takes a little less than the standard PSO algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783986 | PMC |
http://dx.doi.org/10.3390/s22249653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!