A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on Curing Deformation of Composite Thin Shells Prepared by M-CRTM with Adjustable Injection Gap. | LitMetric

Study on Curing Deformation of Composite Thin Shells Prepared by M-CRTM with Adjustable Injection Gap.

Polymers (Basel)

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.

Published: December 2022

A composite thin shell with a high fiber volume fraction prepared by resin transfer molding (RTM) may have void defects, which create deformations in the final curing and lead to the final product being unable to meet the actual assembly requirements. Taking a helmet shell as an example, a multi-directional compression RTM (M-CRTM) method with an adjustable injection gap is proposed according to the shape of the thin shell. This method can increase the injection gap to reduce the fiber volume fraction during the injection process, making it easier for the resin to penetrate the reinforcement and for air bubbles to exit the mold. X-ray CT detection shows that the porosity of the helmet shell prepared by the newly developed technology is 36.6% lower than that of the RTM-molded sample. The void's distribution is more uniform, and its size is decreased, as is the number of voids, especially large voids. The results show that the maximum curing deformation of the M-CRTM-molded helmet shell is reduced by 13.7% compared to the RTM molded sample. This paper then further studies the deformation types of the shell and analyzes the causes of such results, which plays an important role in promoting the application of composite thin shells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784559PMC
http://dx.doi.org/10.3390/polym14245564DOI Listing

Publication Analysis

Top Keywords

composite thin
12
injection gap
12
helmet shell
12
curing deformation
8
thin shells
8
adjustable injection
8
thin shell
8
fiber volume
8
volume fraction
8
shell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!