Use of Dynamic Shear Rheology to Understand Soy Protein Dispersion Properties.

Polymers (Basel)

AgriChemical Technologies Inc., One Gifford Pinchot Drive, Madison, WI 53726, USA.

Published: December 2022

Soy flour dispersions are used as adhesives for bonding interior wood laminates, but the high viscosity of these dispersions requires low solids in the adhesive formulations; the greater water content causes excessive steam pressure during hot press manufacturing. This limits the utility of soy adhesives in replacing urea-formaldehyde adhesives; thus, understanding the cause of high soy viscosities is important. Lack of literature on aqueous soy flour dispersion rheology led to our dynamic rheology studies of these dispersions to understand high viscosity and the effect of various additives. Even at low soy solids, the elastic nature outweighs the viscous properties at low shear, although increasing the shear results in shear-thinning behavior after the yield point. At even higher shear, beyond the flow point where the storage and loss moduli cross, some of the dispersions show an additional shear thinning transition. The comparison of the rheological properties of aqueous dispersions of the soy flour and protein isolate, and another natural protein, ovalbumin from egg whites, led to a better understanding of different types of rheological behaviors. The experimental observations of two observed shear thinning events for soy are consistent with the model of dispersed particles, forming clusters that then form large scale flocculants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786684PMC
http://dx.doi.org/10.3390/polym14245490DOI Listing

Publication Analysis

Top Keywords

soy flour
12
soy
8
high viscosity
8
shear thinning
8
dispersions
5
shear
5
dynamic shear
4
shear rheology
4
rheology understand
4
understand soy
4

Similar Publications

Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.

Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.

View Article and Find Full Text PDF

Pinto beans, an underutilized legume, are abundant in protein content and contain a variety of beneficial phytonutrients. However, the commonly used protein extraction method, alkaline extraction, is associated with several drawbacks. These drawbacks include low extraction yield and purity as well as the production of large amounts of wastewater that can lead to environmental hazards.

View Article and Find Full Text PDF

Grain-based gluten-free cookies are often nutritionally inferior owing to their low protein content. This study aimed to enhance the nutritional value of gluten-free cookies by incorporating soy flour and to investigate the effects of different types of modified soy flour on the properties of gluten-free dough and cookies. Results indicate that all types of modified soy flour significantly decreased water absorption capacity (p < 0.

View Article and Find Full Text PDF

Consumer interest in meat and dairy alternatives drives demand for plant-based protein ingredients. While soy and gluten dominate the market, there is a trend to explore alternative crops for functional ingredient production. The multitude of ingredients poses challenges for food manufacturers in selecting the right protein.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC)-mediated diarrhea can be mitigated by inhibiting bacterial adhesion to intestinal surface. Some lactic acid bacteria (LAB) produce exopolysaccharides (EPS) that can inhibit ETEC adhesion. In this study, we fermented soy flour-based dough (SoyD) with EPS-producing LAB strains Pediococcus pentosaceus TL (PpTL), Leuconostoc citreum TR (LcTR), Leuconostoc mesenteroides WA (LmWA) and L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!