We report measurements of linear and nonlinear elastic properties of polystyrene-based nanocomposites with six types of nanofillers, including single and binary mixtures of allotropic carbon nanoparticles. Composite samples were fabricated by the same technology and contained the same filler concentration (5% wt.), which allowed for a direct comparison of their properties. It was shown that the most significant variations of linear and nonlinear elastic properties occur in different nanocomposites. In particular, the most pronounced enhancements of linear elastic moduli (in about 50%) obtained in tensile and flexural tests and in dynamic mechanical analysis were recorded in the sample filled with spherical fullerene nanoparticles. While the most profound rise of absolute values of nonlinear elastic moduli (tens of times) was obtained in the sample filled with the mixture of carbon nanotubes and graphene. The observed tendencies demonstrated the synergistic effect of fillers of different dimensionality on the elastic properties of nanocomposites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785852PMC
http://dx.doi.org/10.3390/polym14245462DOI Listing

Publication Analysis

Top Keywords

nonlinear elastic
16
elastic properties
16
linear nonlinear
12
properties polystyrene-based
8
polystyrene-based nanocomposites
8
allotropic carbon
8
binary mixtures
8
elastic moduli
8
sample filled
8
elastic
6

Similar Publications

Noether and partial Noether approach for the nonlinear (3+1)-dimensional elastic wave equations.

PLoS One

January 2025

Facultad de Ciencias Naturales e Ingenieria, Universidad de Bogota Jorge Tadeo Lozano, Bogota, Colombia.

The Lie group method is a powerful technique for obtaining analytical solutions for various nonlinear differential equations. This study aimed to explore the behavior of nonlinear elastic wave equations and their underlying physical properties using Lie group invariants. We derived eight-dimensional symmetry algebra for the (3+1)-dimensional nonlinear elastic wave equation, which was used to obtain the optimal system.

View Article and Find Full Text PDF

Aging is a complex biological process influenced by various factors, including genetic and environmental influences. In this study, we present BayesAge 2.0, an upgraded version of our maximum likelihood algorithm designed for predicting transcriptomic age (tAge) from RNA-seq data.

View Article and Find Full Text PDF

Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.

View Article and Find Full Text PDF

To address the challenges of performing in-situ tests on riverbed overburden gravel, this study employs three scaling methods-equal mass substitution, similar gradation, and the mixed method-to investigate the original gradation of the gravel. Large-scale triaxial consolidated drained shear tests were conducted to evaluate the effects of the maximum particle size reduction ratio (M) and confining pressure on the stress-strain behavior, fractal dimension, particle breakage, and the parameters of the Duncan-Chang model (an elastic model describing nonlinear stress-strain relationships). The study explores how scaling, based on fractal dimension and particle breakage rate, impacts the strength and deformation characteristics of gravel materials.

View Article and Find Full Text PDF

Measuring the biomechanical properties of cell-derived fibronectin fibrils.

Biomech Model Mechanobiol

December 2024

Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.

Embryonic development, wound healing, and organogenesis all require assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils. FN fibrils mediate cell migration, force generation, angiogenic sprouting, and collagen deposition. While the critical role of FN fibrils has long been appreciated, we still have an extremely poor understanding of their mechanical properties and how these mechanical properties facilitate cellular responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!