Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The natural adsorption material montmorillonite (MMT) was selected, and cellulose acetate (CA) was used as the loading substrate to design and prepare a kind of green and environment-friendly recyclable porous composite fiber membrane with good heavy metal ion adsorption performance. Acetic acid modified montmorillonite (HCl-MMT), sodium dodecyl sulfonate modified montmorillonite (SDS-MMT), and chitosan modified montmorillonite (CTS-MMT) were prepared by inorganic modification and organic modification, and the porous MMT/CA composite fiber membrane was constructed by centrifugal spinning equipment. The morphological and structural changes of MMT before and after modification and their effects on porous composite fiber membranes were investigated. The morphology, structure, and adsorption properties of the composite fibers were characterized by scanning electron microscopy (SEM) and atomic absorption spectrometry (ASS). The experimental results showed that the maximum adsorption capacity of Cu on the prepared 5 wt% CTS-MMT composite fiber membrane was 60.272 mg/g after 10 h static adsorption. The adsorption of Cu by a porous composite fiber membrane conforms to the quasi-second-order kinetic model and Langmuir isothermal adsorption model. The main factor of the Cu adsorption rate is chemical adsorption, and the adsorption mechanism is mainly monolayer adsorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785991 | PMC |
http://dx.doi.org/10.3390/polym14245458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!