The aim of this study was to assess the chemical/mechanical properties of ion-releasing dental sealants containing strontium-bioactive glass nanoparticles (Sr-BGNPs) and monocalcium phosphate monohydrate (MCPM). Two experimental sealants, TS1 (10 wt% Sr-BGNPs and 2 wt% MCPM) and TS2 (5 wt% Sr-BGNPs and 4 wt% MCPM), were prepared. Commercial controls were ClinproXT (CP) and BeautiSealant (BT). The monomer conversion (DC) was tested using ATR−FTIR (n = 5). The biaxial flexural strength (BFS) and modulus (BFM) were determined (n = 5) following 24 h and 7 days of immersion in water. The Vickers surface microhardness (SH) after 1 day in acetic acid (conc) versus water was tested (n = 5). The bulk and surface calcium phosphate precipitation in simulated body fluid was examined under SEM-EDX. The ion release at 4 weeks was analyzed using ICP-MS (n = 5). The DC after 40 s of light exposure of TS1 (43%) and TS2 (46%) was significantly lower than that of CP (58%) and BT (61%) (p < 0.05). The average BFS of TS1 (103 MPa), TS2 (123 MPa), and BT (94 MPa) were lower than that of CP (173 MPa). The average BFM and SH of TS1 (2.2 GPa, 19 VHN) and TS2 (2.0 GPa, 16 VHN) were higher than that of CP (1.6 GPa, 11 VHN) and BT (1.3 GPa, 12 VHN). TS1 showed higher Ca, P, and Sr release than TS2. Bulk calcium phosphate precipitation was detected on TS1 and TS2 suggesting some ion exchange. In conclusion, the DC of experimental sealants was lower than that of commercial materials, but their mechanical properties were within the acceptable ranges. The released ions may support remineralizing actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783923 | PMC |
http://dx.doi.org/10.3390/polym14245436 | DOI Listing |
Cureus
May 2024
Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura, EGY.
Background: Dental implant materials play a pivotal role in the success of restorative dentistry. This study comprehensively compares the mechanical and esthetic properties of three commonly used dental implant materials: titanium, zirconia, and ceramic.
Objective: This study aimed to provide insights into the suitability of titanium, zirconia, and ceramic for various clinical applications within implant dentistry.
BMC Oral Health
February 2024
Dental Biomaterials, Biomaterials Department, Faculty of Dentistry, Ain-Shams University, Organization of African unity street, El-Qobba Bridge, El-Weili, Cairo, Egypt.
Background: Several methods were introduced for enamel biomimetic remineralization that utilize a biomimetic analogue to interact and absorb bioavailable calcium and phosphate ions and induce crystal nucleation on demineralized enamel. Amelogenin is the most predominant enamel matrix protein that is involved in enamel biomineralization. It plays a major role in developing the enamel's hierarchical microstructure.
View Article and Find Full Text PDFBMC Oral Health
January 2024
Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), Giza, Dokki, 12622, Egypt.
Background: Poly-methyl methacrylate (PMMA) is a type of polymer mostly used to make denture bases. Self-cured acrylic resin (PMMA) can be used to repair a fractured acrylic denture base; however, even after repair, this area remains vulnerable. Carbon nanotubes (CNTs) could be used as a filler for polymer reinforcement.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2024
Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Kitakyushu, 803-8580, Japan. Electronic address:
Polymers (Basel)
December 2022
Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK.
The aim of this study was to assess the chemical/mechanical properties of ion-releasing dental sealants containing strontium-bioactive glass nanoparticles (Sr-BGNPs) and monocalcium phosphate monohydrate (MCPM). Two experimental sealants, TS1 (10 wt% Sr-BGNPs and 2 wt% MCPM) and TS2 (5 wt% Sr-BGNPs and 4 wt% MCPM), were prepared. Commercial controls were ClinproXT (CP) and BeautiSealant (BT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!