Agriculture needs to decrease the use of agrochemicals due to their high toxicity and adopt new strategies to achieve sustainable food production. Therefore, nanoparticles (NPs) and plant growth-promoting bacteria (PGPB) have been proposed as viable strategies to obtain better crop yields with less environmental impact. Here, we describe the effect of silica nanoparticles (SiO-NPs) on survival, antioxidant enzymatic activity, phosphate solubilization capacity, and gibberellin production of -Amazcala (-A). Moreover, the effect of the co-application of SiO-NPs and -A on seed germination, physiological characteristics, and antioxidant enzymatic activity of chili pepper plants was investigated under greenhouse conditions. The results indicated that SiO-NPs at 100 ppm enhanced the role of -A as PGPB by increasing its phosphate solubilization capacity and the production of GA7. Moreover, -A catalase (CAT) and superoxide dismutase (SOD) activities were increased with SiO-NPs 100 ppm treatment, indicating that SiO-NPs act as a eustressor, inducing defense-related responses. The co-application of SiO-NPs 100 ppm and -A improved chili pepper growth. There was an increase in seed germination percentage, plant height, number of leaves, and number and yield of fruits. There was also an increase in CAT and PAL activities in chili pepper plants, indicating that bacteria-NP treatment induces plant immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781252 | PMC |
http://dx.doi.org/10.3390/plants11243445 | DOI Listing |
Sci Rep
December 2024
Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.
Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Ecological Environment of Farmland in Hebei, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China.
To clarify the characteristics of Cd, As, and Pb concentrations in edible parts of crops and farmland soils, a key farmland survey was conducted on the field scale to investigate the characteristics of Cd, As, and Pb in soil and chili pepper (edible parts in the above-ground section) and sweet potato (edible parts under the ground) and assess the health risk of Cd-As-Pb in edible parts of chili pepper and sweet potato to humans in the typical co-contaminated agricultural soils by Cd, As, and Pb from metal smelting and sewage irrigation in North China. The results showed that the agricultural soil from chili pepper and sweet potato fields was co-contaminated by Cd and As at a moderate pollution level. The combined pollution index (2.
View Article and Find Full Text PDFJ Environ Manage
December 2024
National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China.
Microbial inoculants offer an environmentally friendly approach to enhance plant growth and control disease. In this study, two strains, HKSSLJEBR3 (R3) and Ya-1 were isolated from pepper plant roots and tropical rainforest soil, respectively. Both strains exhibited strong antifungal activity against f.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institution, Mirza, Assam, India.
Naga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!