Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this article is to describe the physical mechanism responsible for the appearance of both traveling and nontraveling distortions in a microsized homogeneously aligned nematic (HAN) film under the effect of a large electric field. Numerical studies have been carried out to describe both the traveling and nontraveling dynamic reorientation of the director's field in a thin, in a few tens of micrometers, the HAN film under the effect of a large electric field E (∼1.0V/μm). It is shown that in response to the electric field E applied parallel to the bounding surfaces, the torques acting on the director n[over ̂] may excite the traveling distortion wave propagating normally to both boundaries, whose resemblance to a kinklike wave increases with increasing applied electric field E. Calculations show that in the HAN film the physical mechanism that is responsible for the electric-field-induced distortion of the director field n[over ̂] in the form of traveling wave provides a much faster relaxation regime than in the case of the nontraveling mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.054703 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!