In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with a multiple-relaxation-time model is proposed for incompressible Navier-Stokes equations which are considered as coupled convection-diffusion equations. Through direct Taylor expansion analysis, we show that the Navier-Stokes equations can be recovered correctly from the present MDF-LBM, and additionally, it is also found that the velocity and pressure can be directly computed through the zero and first-order moments of the distribution function. Then in the framework of the present MDF-LBM, we develop a locally computational scheme for the velocity gradient in which the first-order moment of the nonequilibrium distribution is used; this scheme is also extended to calculate the velocity divergence, strain rate tensor, shear stress, and vorticity. Finally, we also conduct some simulations to test the MDF-LBM and find that the numerical results not only agree with some available analytical and numerical solutions but also have a second-order convergence rate in space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.055305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!