Coarse graining in time with the functional renormalization group: Relaxation in Brownian motion.

Phys Rev E

Cardiff School of Engineering, Cardiff University Queens Buildings, The Parade, Cardiff CF24 3AA, United Kingdom.

Published: November 2022

We apply the functional renormalization group (fRG) to study relaxation in a stochastic process governed by an overdamped Langevin equation with one degree of freedom, exploiting the connection with supersymmetric quantum mechanics in imaginary time. After reviewing the functional integral formulation of the system and its underlying symmetries, including the resulting Ward-Takahashi identities for arbitrary initial conditions, we compute the effective action Γ from the fRG, approximated in terms of the leading and subleading terms in the gradient expansion: the local potential approximation and wave-function renormalization, respectively. This is achieved by coarse graining the thermal fluctuations in time resulting in, e.g., an effective potential incorporating fluctuations at all timescales. We then use the resulting effective equations of motion to describe the decay of the covariance and the relaxation of the average position and variance toward their equilibrium values at different temperatures. We use as examples a simple polynomial potential, an unequal Lennard-Jones type potential, and a more complex potential with multiple trapping wells and barriers. We find that these are all handled well, with the accuracy of the approximations improving as the relaxation's spectral representation shifts to lower eigenvalues, in line with expectations about the validity of the gradient expansion. The spectral representation's range also correlates with temperature, leading to the conclusion that the gradient expansion works better for higher temperatures than lower ones. This paper demonstrates the ability of the fRG to expedite the computation of statistical objects in otherwise long-timescale simulations, acting as a first step to more complicated systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.054109DOI Listing

Publication Analysis

Top Keywords

gradient expansion
12
coarse graining
8
functional renormalization
8
renormalization group
8
potential
5
graining time
4
time functional
4
group relaxation
4
relaxation brownian
4
brownian motion
4

Similar Publications

An MRI assessment of mechanisms underlying lesion growth and shrinkage in multiple sclerosis.

Ann Clin Transl Neurol

January 2025

NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.

Objective: To assess the pathological mechanisms contributing to white matter (WM) lesion expansion or contraction and remyelination in multiple sclerosis (MS).

Methods: We assessed 1,613 lesions in 49 people with relapsing-remitting MS in the CCMR-One bexarotene trial (EudraCT 2014-003145-99). We measured lesion orientation relative to WM tracts, surface-in gradients and veins.

View Article and Find Full Text PDF

Effect of Gradient Transition Layer on the Cracking Behavior of Ni60B (NiCrBSi) Coatings by Laser Cladding.

Materials (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.

View Article and Find Full Text PDF

This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.

View Article and Find Full Text PDF

Tidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.

View Article and Find Full Text PDF

Dry evergreen Afromontane forests are severely threatened due to the expansion of agriculture and overgrazing by livestock. The objective of this study was to investigate the composition of woody species, structure, regeneration status and plant communities in Seqela forest, as well as the relationship between plant community types and environmental variables. Systematic sampling was used to collect vegetation and environmental data from 52 (20 m x 20 m) (400 m2) plots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!