In a system of interacting thin rigid rods of equal length 2ℓ on a two-dimensional grid of lattice spacing a, we show that there are multiple phase transitions as the coupling strength κ=ℓ/a and the temperature are varied. There are essentially two classes of transitions. One corresponds to the Ising-type spontaneous symmetry-breaking transition and the second belongs to less-studied phase transitions of geometrical origin. The latter class of transitions appears at fixed values of κ irrespective of the temperature, whereas the critical coupling for the spontaneous symmetry-breaking transition depends on it. By varying the temperature, the phase boundaries may cross each other, leading to a rich phase behavior with infinitely many phases. Our results are based on Monte Carlo simulations on the square lattice and a fixed-point analysis of a functional flow equation on a Bethe lattice.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.L052101DOI Listing

Publication Analysis

Top Keywords

phase transitions
12
spontaneous symmetry-breaking
8
symmetry-breaking transition
8
transitions
5
sequence phase
4
transitions model
4
model interacting
4
interacting rods
4
rods system
4
system interacting
4

Similar Publications

Metastability of multi-population Kuramoto-Sakaguchi oscillators.

Chaos

January 2025

Department of Physics, Tohoku University, Sendai 980-8578, Japan.

An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Radiology, miami, FL, USA.

Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.

View Article and Find Full Text PDF

Interaction-Enhanced Superradiance of a Rydberg-Atom Array.

Phys Rev Lett

December 2024

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.

We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths.

View Article and Find Full Text PDF

The identification of tipping points is essential for the prediction of collapses or other sudden changes in complex systems. Applications include studies of ecology, thermodynamics, climatology, and epidemiology. However, detecting early signs of proximity to a tipping is made challenging by complexity and nonlinearity.

View Article and Find Full Text PDF

Intermittent Thermal Convection in Jammed Emulsions.

Phys Rev Lett

December 2024

Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy.

We study the process of thermal convection in jammed emulsions with a yield-stress rheology. We find that heat transfer occurs via an intermittent mechanism, whereby intense short-lived convective "heat bursts" are spaced out by long-lasting conductive periods. This behavior is the result of a sequence of fluidization-rigidity transitions, rooted in a nontrivial interplay between emulsion yield-stress rheology and plastic activity, which we characterize via a statistical analysis of the dynamics at the droplet scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!