AI Article Synopsis

  • The study focuses on measuring the energy transfer between ions and electrons in high-energy-density plasmas using low-velocity ions at the OMEGA laser facility.
  • The researchers conducted experiments with D^{3}He gas capsules that achieved extreme densities and temperatures through shock-driven implosions.
  • Their findings on ion energy loss matched quantum-mechanical predictions, offering new insights for improving models related to alpha heating in fusion, stellar atmospheres, and supernova shocks.

Article Abstract

We report on measurements of the ion-electron energy-transfer cross section utilizing low-velocity ion stopping in high-energy-density plasmas at the OMEGA laser facility. These measurements utilize a technique that leverages the close relationship between low-velocity ion stopping and ion-electron equilibration. Shock-driven implosions of capsules filled with D^{3}He gas doped with a trace amount of argon are used to generate densities and temperatures in ranges from 1×10^{23} to 2×10^{24} cm^{-3} and from 1.4 to 2.5 keV, respectively. The energy loss of 1-MeV DD tritons and 3.7-MeV D^{3}He alphas that have velocities lower than the average velocity of the thermal electrons is measured. The energy loss of these ions is used to determine the ion-electron energy-transfer cross section, which is found to be in excellent agreement with quantum-mechanical calculations in the first Born approximation. This result provides an experimental constraint on ion-electron energy transfer in high-energy-density plasmas, which impacts the modeling of alpha heating in inertial confinement fusion implosions, magnetic-field advection in stellar atmospheres, and energy balance in supernova shocks.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.L053201DOI Listing

Publication Analysis

Top Keywords

ion-electron energy-transfer
12
energy-transfer cross
12
high-energy-density plasmas
12
measurements ion-electron
8
low-velocity ion
8
ion stopping
8
energy loss
8
cross section in
4
section in high-energy-density
4
plasmas report
4

Similar Publications

The development of highly stable and strongly active electrode materials for sodium-ion batteries (SIBs) and overall water splitting (OWS) is critical in sustainable energy storage and conversion systems. Here, a new electrode material N-Fe-C@NbCT is introduced, with a layered sandwich structure consisting of N-doping Fe-MOF derived-nanorods (Fe-C) and NbCT MXenes. Specifically, NbCT obtained by etching NbAlC with HF acid is used as the main body to construct the layered sandwich structure with Fe-C as the filler.

View Article and Find Full Text PDF

Enhancing Stability and 6C Fast Charging in µSi||LiNiCoMnO Lithium-Ion Batteries Using Conductive Binders With Multiple Hydrogen Bonds.

Small

December 2024

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Micro-sized silicon (µSi) anodes are an attractive alternative to graphite for high-energy lithium-ion batteries (LIBs) due to their low cost and high specific capacity. However, they suffer from severe volume expansion during lithiation, leading to fast capacity decay and poor rate capability. Herein, a new hybrid binder featuring a cross-linked conductive network and multiple hydrogen bonds for µSi anodes with high areal capacity is reported.

View Article and Find Full Text PDF

In molecular beam scattering experiments, an important technique for measuring product energy and angular distributions is velocity map imaging following photoionization of one or more scattered species. For studies with cold molecular beams, the ultimate resolution of such a study is often limited by the product detection process. When state-selective ionization detection is used, excess energy from the ionization step can transfer to kinetic energy in the target molecular ion-electron pair, resulting in measurable cation recoil.

View Article and Find Full Text PDF

Vanadium-based oxide cathodes are promising energy-storage systems for aqueous zinc-ion batteries (AZIBs) because of their high energy density and safety, and low cost. However, their limited ion/electron transfer rates and rapid capacity decay pose challenges to their practical application. To overcome these limitations, VO nanoparticles are developed with surface oxygen vacancies integrated with N-doped carbon nanofibers (VO@NCNFs), using an electrospinning method combined with an in situ oxidation/reduction strategy.

View Article and Find Full Text PDF

Although lithium-sulfur batteries have satisfactory theoretical specific capacity and energy density, they are difficult to further commercialize due to the shuttle effect of soluble polysulfides and slow sulfur oxidation kinetics. Based on this, in this work, the catalyst MXene-VS-SnS (MVS), a dual heterostructured catalyst with ohmic contacts, is prepared by a one-step hydrothermal method and electrostatic self-adsorption for lithium-sulfur battery cathode materials. Experimental and theoretical results show that the ohmic contact induces spontaneous charge rearrangement, resulting in the formation of a fast charge transfer pathway at the MVS heterojunction interface, which helps to reduce the energy barrier for polysulfide reduction and LiS oxidation during the discharge/charge process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!