The sigma-2 receptor/transmembrane protein 97 (σ2R/TMRM97) is a promising biomarker of tumor proliferation and a target for cancer therapy. [H]DTG has been used to evaluate σ2R/TMEM97 binding affinity in compound development studies. However, [H]DTG has equal and moderate binding affinities to both sigma 1 receptor (σ1R) and σ2R/TMEM97. Furthermore, co-administration with the σ1R masking compound (+)-pentazocine may cause bias in σ2R/TMEM97 binding affinity screening experiments. We have developed a radioiodinated ligand, [I]RHM-4, which has high affinity and selectivity for σ2R/TMEM97 versus σ1R. In this study, a head-to-head comparison between [H]DTG and [I]RHM-4 on the binding affinity and their effectiveness in σ2R/TMEM97 compound screening studies was performed. The goal of these studies was to determine if this radioiodinated ligand is a suitable replacement for [H]DTG for screening new σ2R/TMEM97 compounds. Furthermore, to delineate the binding properties of [I]RHM-4 to the σ2R/TMEM97, the structure of RHM-4 was split into two fragments. This resulted in the identification of two binding regions in the σ2R, the "DTG" binding site, which is responsible for binding to the σ2R/TMEM97, and the secondary binding site, which is responsible for high affinity and selectivity for the σ2R/TMEM97 versus the σ1R. The results of this study indicate that [I]RHM-4 is an improved radioligand for in vitro binding studies of the σ2R/TMEM97 versus [H]DTG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784403 | PMC |
http://dx.doi.org/10.3390/ph15121564 | DOI Listing |
Biosci Biotechnol Biochem
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA. Electronic address:
Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.
View Article and Find Full Text PDFCell
January 2025
Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:
Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!