The History of the Intestinal Microbiota and the Gut-Brain Axis.

Pathogens

Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 60-830 Poznan, Poland.

Published: December 2022

AI Article Synopsis

  • The gut-brain axis and intestinal microbiota have gained increased attention in recent years, but they have long been a focus for health professionals seeking to understand physical and mental health issues.
  • Historical research has shown that the exploration of the gut-brain connection has evolved with changes in medical practices and societal perspectives.
  • The authors emphasize the ongoing need for further research in this area, highlighting its growing significance for scientists, medical professionals, and the public.

Article Abstract

The gut-brain axis and the intestinal microbiota have been an area of an intensive research in the last few years. However, it is not a completely novel area of interest for physicians and scientists. From the earliest centuries, both professionals and patients turned their attention to the gastrointestinal system in order to find the root of physical and mental disturbances. The approach to the gut-brain axis and the therapeutic methods have changed alongside the development of different medical approaches to health and illness. They often reflected the social changes. The authors of this article aim to provide a brief history of the gut-brain axis and the intestinal microbiota in order to demonstrate how important the study of these systems is for both scientists and medical professionals, as well as for the general public. We analysed the publications accessible through PubMed regarding the microbiota and gut-brain axis history. If available, we accessed the original historical sources. We conclude that although the history of this science might be long, there are still many areas that need to be researched, analysed, and understood in future projects. The interest in the subject is not diminishing, but rather it has increased throughout the years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786924PMC
http://dx.doi.org/10.3390/pathogens11121540DOI Listing

Publication Analysis

Top Keywords

gut-brain axis
20
intestinal microbiota
12
microbiota gut-brain
8
axis intestinal
8
gut-brain
5
axis
5
history
4
history intestinal
4
microbiota
4
axis gut-brain
4

Similar Publications

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a major devastating neurodegenerative disorder afflicting majorly the geriatric population. Emerging studies augur the connection of gut dysbiosis and circadian disruption with the early onset of AD. Gut dysbiosis is characterized by dysregulated gut microbiota signature and compromised intestinal integrity, which provokes the translocation of bacterial metabolites into the systemic circulation.

View Article and Find Full Text PDF

Background: There had been extensive research on the role of the gut microbiota in human health and disease. Increasing evidence suggested that the gut-brain axis played a crucial role in Parkinson's disease, with changes in the gut microbiota speculated to be involved in the pathogenesis of Parkinson's disease or interfere with its treatment. However, studies utilizing deep learning methods to predict Parkinson's disease through the gut microbiota were still limited.

View Article and Find Full Text PDF

Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD.

View Article and Find Full Text PDF

Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!