Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The article is devoted to the development of an EUV microscope using a wavelength of 13.84 nm. Due to the use of a mirror lens with a large numerical aperture, NA = 0.27, and a short depth of focus, it has been possible to carry out z-tomography of bio-samples for the first time with this type of microscope. A 3D image was reconstructed, and a pixel resolution of 140 nm was obtained. A new simple algorithm for the 3D reconstruction of absorption images from z-tomography data has been proposed that takes into account lens aberrations and a point spread function. The algorithm reduces the inverse absorption task to the corresponding well-studied task of fluorescence microscopy, with an error of 10% for cells up to 10 µm thick.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.475032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!