Today's 3D dynamic holographic display techniques suffer from severe limitations due to an available number of pixels that is several orders of magnitude lower than required by conventional approaches. We introduce a solution to this problem by introducing the concept of functional pixels. This concept is based on pixels that individually spatially modulate the amplitude and phase of incident light with a polynomial function, rather than just a constant phase or amplitude. We show that even in the simple case of a linear modulation of the phase, the pixel count can be drastically reduced up to 3 orders of magnitude while preserving most of the image details. This scheme can be easily implemented with already existing technology, such as micro mirror arrays that provide tip, tilt and piston movement. Even though the individual pixels need to be technologically more advanced, the comparably small number of such pixels required to form a display may pave the way towards true holographic dynamic 3D displays.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.474589DOI Listing

Publication Analysis

Top Keywords

functional pixels
8
true holographic
8
number pixels
8
orders magnitude
8
pixels
5
pixels pathway
4
pathway true
4
holographic displays
4
displays today's
4
today's display
4

Similar Publications

Spatially selective imaging (SSI) involves sampling a group of pixels from different positions on an encoded object to display a decoded image. Here, SSI is achieved by using off-axis cylindrical Fresnel lens arrays to decode multiple images from an encoded print of structural color pixels. Each image is optically retrieved by separately placing different "keys" (arrays of lenses in different pseudorandom configurations) over the same encoded print, and then each image is digitally reconstructed for visualization.

View Article and Find Full Text PDF

In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.

View Article and Find Full Text PDF

Purpose: To assess the colocalization of ellipsoid zone (EZ) disruption with nonperfusion in choriocapillaris (CC), retinal superficial capillary plexus (SCP), and deep capillary plexus (DCP) in diabetic patients using en face optical coherence tomography (OCT) and OCT angiography (OCTA).

Methods: Macular OCT and OCTA scans (3 × 3 mm) of 41 patients with diabetic retinopathy were obtained using an RTVue XR Avanti instrument. After correcting the shadow artifacts, EZ integrity was assessed in the en face OCT slab using the Gaussian mixture model clustering method compared with the corresponding EZ en face OCT of 11 age-matched normal patients.

View Article and Find Full Text PDF

Gamma-ray coded-aperture imaging technology has important applications in the fields of nuclear security, isolated source detection, and the decommissioning of nuclear facilities. However, artifacts can reduce the quality of reconstructed images and affect the identification of the intensity and location of radioactive sources. In this paper, a gamma-ray coded-aperture imaging method based on primitive and reversed coded functions (PRCF) was proposed to reduce imaging artifacts.

View Article and Find Full Text PDF

Dual-function paper-based biosensor for sensitive detection of hyaluronidase and human papillomavirus DNA using diffusion wet area as readout.

Biosens Bioelectron

December 2024

Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China. Electronic address:

Herein, a novel dual-function paper-based biosensor using diffusion wet area as readout has been developed for simple and sensitive detection of hyaluronidase (HAase) and human papillomavirus (HPV) 16 DNA, respectively. The target-regulated-water absorption hydrogel synthesized by hyaluronic acid (HA) and single-stranded DNA (ssDNA) is chosen as an ideal material for diffusion wet area generation on paper. The hydrogel can be degraded through the enzymolysis of HA by HAase or the trans-cleavage of ssDNA by HPV DNA-activated CRISPR/cas12a system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!