We propose and experimentally demonstrate that giant asymmetric reflection of circularly polarized light based on asymmetric coupling can be achieved in single-layer extrinsic chiral metasurfaces at oblique incidence. The asymmetric coupling and asymmetric reflection in the extrinsic chiral metasurfaces are caused by extrinsic chirality, allowing them to have extremely high values. An asymmetric reflection of approximately 40% is measured. Furthermore, the asymmetric reflection of extrinsic chiral metasurfaces is demonstrated not only in intensity but also in phase retardation, which induces asymmetric polarization state conversion. An approximately 14° asymmetric reflected polarization offset from the symmetry axis is achieved. Our research provides an effective new method for constructing huge asymmetric coupled systems to manipulate electromagnetic waves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.478073 | DOI Listing |
Bioengineering (Basel)
January 2025
Research & Development, Aesculap AG, 78532 Tuttlingen, Germany.
Instability remains one of the most common indications for revision after total knee arthroplasty. To gain a better understanding of how an implant will perform in vivo and support surgeons in selecting the most appropriate implant design for an individual patient, it is crucial to evaluate the implant constraint within clinically relevant ligament and boundary conditions. Therefore, this study investigated the constraint of three different implant designs (symmetrical implants with and without a post-cam mechanism and an asymmetrical medial-stabilized implant) under anterior-posterior shear forces and internal-external rotation moments at different flexion angles in human cadaveric knees using a six-degrees-of-freedom joint motion simulator.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.
A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.
View Article and Find Full Text PDFOrthod Fr
December 2024
92, boulevard de la Tour-Maubourg, 75007 Paris, France
Introduction: The cant of the occlusal plane in the frontal plane reflects facial asymmetry. Its treatment requires close collaboration between the orthodontist and the maxillofacial surgeon. In case of mild cant, treatment consists in coordination of dental arches followed by mandibular osteotomy.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
To maintain stable vision, behaving animals make compensatory eye movements in response to image slip, a reflex known as the optokinetic response (OKR). Although OKR has been studied in several avian species, eye movements during flight are expected to be minimal. This is because vertebrates with laterally placed eyes typically show weak OKR to nasal-to-temporal motion (NT), which simulates typical forward locomotion, compared with temporal-to-nasal motion (TN), which simulates atypical backward locomotion.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!