Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stimulated Raman scattering is ubiquitous in many high-intensity laser environments. Parametric four-wave mixing between the pump and Raman sidebands can affect the Raman gain, but stringent phase matching requirements and strongly nonlinear dynamics obscure clear understanding of its effects at high laser powers. Here we investigate four-wave mixing in the presence of strong self-focusing and weak ionization at laser powers above the Kerr critical power. Theoretical analysis shows that the plasma generated at focus naturally leads to phase matching conditions suitable for enhanced Raman gain, almost without regard to the initial phase mismatch. Multidimensional nonlinear optical simulations with multiphoton and collisional ionization confirm the enhancement and suggest that it may lead to significantly higher Raman losses in some high-intensity laser environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.474104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!