Clinical trials have demonstrated the health benefits of intermittent fasting (IF). However, the potential mechanism of IF in alleviating dextran sulfate sodium (DSS)-induced colitis is not fully understood. The present study was mainly designed to explore the dynamic changes in the gut microbiota and metabolome after short-term (2 weeks) or long-term (20 weeks) IF and therefore clarify the potential mechanisms by which IF ameliorates DSS-induced colitis in a murine model. Thirty-two C57BL/6 male mice were equally divided into four groups and underwent IF intervention for 2 weeks (SIF group, n = 8), 20 weeks (LIF group, n = 8), or were allowed free access to food for 2 weeks (SAL group, n = 8) or 20 weeks (LAL group, n = 8). The thirty-two C57BL/6 male mice were accepted for the diet intervention of 2 weeks of IF or fed ad libitum. Colitis was induced by drinking 2% DSS for 7 days. Our findings showed that short-term IF prominently elevates the abundance of Bacteroides, Muibaculum and Akkermansia (p < 0.001, p < 0.001, p < 0.001, respectively), and decreased the abundance of Ruminiclostridium (p < 0.05). Long-term IF, however, decreased the abundance of Akkermansia and obviously increased the abundance of Lactobacillus (p < 0.05, p < 0.001, respectively). Metabolites mainly associated with nucleoside, carbohydrate, amino acid, bile acid, fatty acid, polyol, steroid and amine metabolism were identified in the faeces using untargeted GC/MS. In particular, inosine was extremely enriched after short-term IF and long-term IF (p < 0.01, p < 0.01, respectively); butyrate, 2-methyl butyric acid and valeric acid were significantly decreased after short-term IF (p < 0.001, p < 0.001, p < 0.01, respectively); and 2-methyl butyric acid was significantly increased after long-term IF (p < 0.001). The abundance of lithocholic acid (LCA), one of the secondary bile acids, increased significantly after short-term and long-term IF based on UPLC−MS/MS (p < 0.001, p < 0.5, respectively). Of note, IF markedly mitigated DSS-induced acute colitis symptoms and down-regulated pro-inflammatory cytokines IL-1α, IL-6, keratinocyte-derived chemokine (KC) and G-CSF levels in the serum (p < 0.01, p < 0.001, p < 0.05, p < 0.001, respectively). Furthermore, a correlation analysis indicated that the disease activity index (DAI) score and serum levels of IL-1α, IL-6, KC, and G-CSF were negatively correlated with the relative abundance of Akkermansia and the faecal metabolites LCA and inosine. This study confirmed that IF altered microbiota and reprogramed metabolism, which was a promising development in the attempt to prevent DSS-induced colitis. Moreover, our findings provide new insights regarding the correlations among the mucosal barrier dysfunction, metabolome, and microbiome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788567 | PMC |
http://dx.doi.org/10.3390/nu14245311 | DOI Listing |
Gut
March 2025
Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai, China
Background: GPR171 suppresses T cell immune responses involved in antitumour immunity, while its role in inflammatory bowel disease (IBD) pathogenesis remains unclear.
Objective: We aimed to investigate the role of GPR171 in modulating CD4 T cell effector functions in IBD and evaluate its therapeutic potential.
Design: We analysed GPR171 expression in colon biopsies and peripheral blood samples from patients with IBD and assessed the impact of GPR171 on CD4 T cell differentiation through administration of its endogenous ligand (BigLEN).
Eur J Med Chem
March 2025
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China. Electronic address:
Targeting NLRP3 is a highly promising strategy for treating uncontrolled inflammation, which can cause a wide range of diseases or promote disease progression. More NLRP3-targeting inhibitors with different scaffolds are needed to increase the chances of developing safe and effective NLRP3 inhibitors and treating inflammation in different tissues. Here, we discovered the novel quinoline analogues that exhibit potent inhibitory activity against the NLRP3/IL-1β pathway in J774A.
View Article and Find Full Text PDFAdv Mater
March 2025
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Overproduction of pathogenic cell-free DNA (cfDNA) and reactive oxygen species (ROS) plays crucial roles in the onset and perpetuation of ulcerative colitis (UC). Inspired by sweeping robots, a magnesium@polylactic acid-glycolic acid copolymer@polyethylenimine (Mg@PLGA@PEI) microswimmer capable of cleaning off deleterious disease triggers along its path of progress is designed. Mg@PLGA@PEI is successfully synthesized by adopting a core-shell structure with a small opening which allows for Mg-water reaction.
View Article and Find Full Text PDFActa Pharmacol Sin
March 2025
Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
Current treatments of inflammatory bowel disease (IBD) largely depend on anti-inflammatory and immunosuppressive strategies with unacceptable efficacy and adverse events. Resolution or repair agents to treat IBD are not available but potential targets like formyl peptide receptor 2 (FPR2/ALX) may fill the gap. In this study we evaluated the therapeutic effects of two small molecule FPR2/ALX modulators (agonist Quin-C1 and antagonist Quin-C7) against IBD.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
Curcumin (Cur) has gained considerable recognition because of its anti-inflammatory and antioxidant effects as a bioactive compound, but its water insolubility and low bioaccessibility limit its application in food industry. In this study, Pickering emulsion stabilized by Spanish mackerel protein and pectin complex (SMP/PEC) was prepared to deliver curcumin, and its alleviating effects on DSS-induced ulcerative colitis (UC) were investigated. The emulsions stabilized by SMP/PEC 1:1 inhibited phase separation, had good rheological properties and the emulsions were stable at high temperatures, centrifugation, salt ions, and pH conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!