Application of Piezoelectric Material and Devices in Bone Regeneration.

Nanomaterials (Basel)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.

Published: December 2022

Bone injuries are common in clinical practice. Given the clear disadvantages of autologous bone grafting, more efficient and safer bone grafts need to be developed. Bone is a multidirectional and anisotropic piezoelectric material that exhibits an electrical microenvironment; therefore, electrical signals play a very important role in the process of bone repair, which can effectively promote osteoblast differentiation, migration, and bone regeneration. Piezoelectric materials can generate electricity under mechanical stress without requiring an external power supply; therefore, using it as a bone implant capable of harnessing the body's kinetic energy to generate the electrical signals needed for bone growth is very promising for bone regeneration. At the same time, devices composed of piezoelectric material using electromechanical conversion technology can effectively monitor the structural health of bone, which facilitates the adjustment of the treatment plan at any time. In this paper, the mechanism and classification of piezoelectric materials and their applications in the cell, tissue, sensing, and repair indicator monitoring aspects in the process of bone regeneration are systematically reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785304PMC
http://dx.doi.org/10.3390/nano12244386DOI Listing

Publication Analysis

Top Keywords

bone regeneration
16
piezoelectric material
12
bone
12
electrical signals
8
process bone
8
piezoelectric materials
8
application piezoelectric
4
material devices
4
devices bone
4
regeneration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!