This research work focuses on the potential application of an organic compound, santalol, obtained from santalum album, in the inhibition of the enzyme tyrosinase, which is actively involved in the biosynthesis of melanin pigment. Over-production of melanin causes undesirable pigmentation in humans as well as other organisms and significantly downgrades their aesthetic value. The study is designed to explain the purification of tyrosinase from the mushroom , followed by activity assays and enzyme kinetics to give insight into the santalol-modulated tyrosinase inhibition in a dose-dependent manner. The multi-spectroscopic techniques such as UV-vis, fluorescence, and isothermal calorimetry are employed to deduce the efficiency of santalol as a potential candidate against tyrosinase enzyme activity. Experimental results are further verified by molecular docking. Santalol, derived from the essential oils of santalum album, has been widely used as a remedy for skin disorders and a potion for a fair complexion since ancient times. Based on enzyme kinetics and biophysical characterization, this is the first scientific evidence where santalol inhibits tyrosinase, and santalol may be employed in the agriculture, food, and cosmetic industries to prevent excess melanin formation or browning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786741PMC
http://dx.doi.org/10.3390/molecules27248915DOI Listing

Publication Analysis

Top Keywords

santalum album
8
enzyme kinetics
8
santalol
6
tyrosinase
6
elucidating role
4
role santalol
4
santalol potent
4
potent inhibitor
4
inhibitor tyrosinase
4
tyrosinase vitro
4

Similar Publications

Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L.

Gene

December 2024

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:

Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.

View Article and Find Full Text PDF

[Textual research on Zitan].

Zhongguo Zhong Yao Za Zhi

October 2024

Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

In recent years, with the continuous deepening of the theory of Wu Yun Liu Qi, the application of Zitan in Shenping Decoction and Shengming Decoction has gradually become widespread. Because Zitan is an imported herbal medicine, it is not commonly used in modern medicine and known as an unusual medicinal material. The unclear original plants may affect the clinical application of this medicine.

View Article and Find Full Text PDF

Enhancing Antimicrobial Efficacy of Sandalwood Essential Oil Against for Food Preservation.

Foods

December 2024

Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia.

The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of forming biofilms, entering a sessile state that enhances their resistance to broad-spectrum antibiotics. Essential oils, renowned for their antibacterial properties, present a promising natural alternative for food preservation.

View Article and Find Full Text PDF

The telomere-to-telomere (T2T) genome provides insights into the evolution of specialized centromere sequences in sandalwood.

Gigascience

January 2024

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China.

Background: Sandalwood, a prized hemiparasitic plant, is highly sought in the commercial market because of its aromatic core materia. The structure and stability of the genome are instrumental in the rapid adaptation of parasitic plants to their surroundings. However, there is a conspicuous lack of research on the genomic-level adaptive evolution of sandalwood.

View Article and Find Full Text PDF

Drought has been found to affect the size and color of precious heartwood of Dalbergia odorifera, but the mechanism remains unclear. For this purpose, we performed the measurement of heartwood size, color, and flavonoid content and composition in a 15-year-old mixed plantation of D. odorifera and Santalum album that had been subjected to two levels of rainfall exclusion and control treatments for seven years, and carbon isotope labeling and anatomical observation in 2-year-old potted D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!