Here, we report on a new automated electrochemical process for the production of graphene oxide (GO) from graphite though electrochemical exfoliation. The effects of the electrolyte and applied voltage were investigated and optimized. The morphology, structure and composition of the electrochemically exfoliated GO (EGO) were probed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR spectroscopy and Raman spectroscopy. Important metrics such as the oxygen content (25.3 at.%), defect density (I/I = 0.85) and number of layers of the formed EGO were determined. The EGO was also compared with the GO prepared using the traditional chemical method, demonstrating the effectiveness of the automated electrochemical process. The electrochemical properties of the EGO, CGO and other carbon-based materials were further investigated and compared. The automated electrochemical exfoliation of natural graphite powder demonstrated in the present study does not require any binders; it is facile, cost-effective and easy to scale up for a large-scale production of graphene-based nanomaterials for various applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783006 | PMC |
http://dx.doi.org/10.3390/molecules27248643 | DOI Listing |
Nanomaterials (Basel)
December 2024
State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.
View Article and Find Full Text PDFThe widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS2-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g-1 at 0.5 A g-1 and 320 mAh g-1 at 20 A g-1 over 400 cycles.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
LIME Laboratory, CNRS, MADIREL (UMR 7246), Campus St Jérôme, Aix Marseille University, 13013 Marseille, France.
Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.
View Article and Find Full Text PDFSmall
December 2024
Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P. R. China.
The hydrolysis of lightweight metal-based materials is a promising technology for supplying hydrogen to portable fuel cells. Various additives for the catalytic modification of Mg hydrolysis have been investigated. Efficient catalysts and small magnesium particle sizes are key to enhancing the rate of hydrogen production.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
The detection of 4-chloro-2-methylphenoxyacetic acid (CMPA) herbicide is crucial due to the potential health risks linked to exposure through drinking water, air, and food, which may adversely affect liver and kidney functions. To address this environmental concern and promote sustainable agriculture, a sensitive carbon paste sensor incorporating a composite material was developed. The composite sensor is based on porous cobalt-1,4-benzenedicarboxylate metal-organic framework and exfoliated montmorillonite nanolayers (Co-OF/MMt).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!