In this paper, we use terahertz combined with metamaterial technology as a powerful tool to identify analytes at different concentrations. Combined with the microfluidic chip, the experimental measurement can be performed with a small amount of analyte. In detecting the troponin antigen, surface modification is carried out by biochemical binding. Through the observation of fluorescent antibodies, the average number of fluorescent dots per unit of cruciform metamaterial is 25.60, and then, by adjusting the binding temperature and soaking time, the average number of fluorescent dots per unit of cruciform metamaterial can be increased to 181.02. Through the observation of fluorescent antibodies, it is confirmed that the antibodies can be successfully stabilized on the metamaterial and then bound to the target antigen. The minimum detectable concentration is between 0.05~0.1 μg/100 μL, and the concentration and ΔY show a positive correlation of R = 0.9909.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783854 | PMC |
http://dx.doi.org/10.3390/mi13122257 | DOI Listing |
Nature
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
U.S. Army DEVCOM Armaments Center, Picatinny Arsenal, Wharton, NJ 07885, USA.
3D printing has become essential to many fields for its low-cost production and rapid prototyping abilities. As 3D printing becomes an alternative manufacturing tool, developing methods to non-destructively evaluate defects for quality control is essential. This study integrates the non-destructive terahertz (THz) analysis methods of terahertz time-domain spectroscopy (THz-TDS) and terahertz computed tomography (THz CT) to image and assess 3D printed resin structures for defects.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China.
The Pancharatnam-Berry (PB) phase has revolutionized the design of metasurfaces, offering a straightforward and robust method for controlling wavefronts of electromagnetic waves. However, traditional metasurfaces have fixed PB phases determined by the orientation of their individual elements. In this study, an innovative structural design and integration scheme is proposed that utilizes vanadium dioxide, a phase-change material, to achieve thermally controlled dynamic PB phase control within the metasurface.
View Article and Find Full Text PDFOrganic-crystal-based optical terahertz (THz) sources and detectors are powerful tools for THz spectroscopy, owing to the wide frequency tunability. A drawback of this technique lies in the inherent absorption peaks of nonlinear crystals, leaving several gaps in the spectral coverage. As an alternative type of organic crystal, hydrogen-bonded OH1 is promising to complement the existing gaps.
View Article and Find Full Text PDFPeerJ Comput Sci
November 2024
Department of Computer System & Technology, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia.
Federated learning (FL) is a popular method where edge devices work together to train machine learning models. This study introduces an efficient network for analyzing healthcare records. It uses VPN technology and applies a federated learning approach over a wireless backhaul network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!