Additive laser-induced forward transfer (LIFT) of metal bactericidal nanoparticles from a polymer substrate directly onto food bacterial biofilms has demonstrated its unprecedented efficiency in combating pathogenic microorganisms. Here, a comprehensive study of laser fluence, metal (gold, silver and copper) film thickness, and the transfer distance effects on the antibacterial activity regarding biofilms of Gram-negative and Gram-positive food bacteria (, , , , spp.) indicated the optimal operation regimes of the versatile modality. LIFT-induced nanoparticle penetration into a biofilm was studied by energy-dispersion X-ray spectroscopy, which demonstrated that nanoparticles remained predominantly on the surface of the biofilm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788456PMC
http://dx.doi.org/10.3390/mi13122170DOI Listing

Publication Analysis

Top Keywords

laser-induced forward
8
forward transfer
8
bacterial biofilms
8
additive nanosecond
4
nanosecond laser-induced
4
transfer high
4
high antibacterial
4
antibacterial metal
4
metal nanoparticle
4
nanoparticle dose
4

Similar Publications

Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer.

Nanomaterials (Basel)

November 2024

School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The rapid evolution of microelectronics and display technologies has driven the demand for advanced manufacturing techniques capable of precise, high-speed microchip transfer. As devices shrink in size and increase in complexity, scalable and contactless methods for microscale placement are essential. Laser-induced forward transfer (LIFT) has emerged as a transformative solution, offering the precision and adaptability required for next-generation applications such as micro-light-emitting diodes (μ-LEDs).

View Article and Find Full Text PDF

Spectroscopic characterization of buffer-gas-cooled lead monofluoride molecules in the BΣ(υ' = 0) ← XΠ(υ = 0) transition.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, PR China; Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1 - Street, Urumqi, Xinjiang 830011, PR China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, PR China. Electronic address:

Establishing a nonzero measurement of the electron Electric Dipole Moment (eEDM) has long been a fundamental pursuit in atomic, molecular and optical physics, offering possible insights into new physics beyond the Standard Model. In this regard, lead monofluoride (PbF) has emerged as a potential candidate for measuring eEDM primarily due to its suitable properties such as the strong internal effective electric field, and eEDM-sensitive ground state with large Ω-doubling and small magnetic g factor. In the present work, we realized the production of a buffer-gas-cooled PbF molecular beam and characterized its high-resolution spectroscopy in the BΣ(υ'=0) ← XΠ(υ = 0) transition, including both direct absorption and laser-induced fluorescence spectroscopy.

View Article and Find Full Text PDF

Ultrafast structural transition and electron-phonon/phonon-phonon coupling in antimony revealed by nonadiabatic molecular dynamics.

J Phys Condens Matter

November 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, People's Republic of China.

Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.

View Article and Find Full Text PDF

Magnetic nanorobot swarms can mimic group behaviors in nature and can be flexibly controlled by programmable magnetic fields, thereby having great potential in various applications. This paper presents a novel approach for the rapid and large-scale processing of laser-induced graphene (LIG) @FeO-based-nanorobot swarms utilizing one-step UV laser processing technology. The swarm is capable of forming a variety of reversible morphologies under the magnetic field, including vortex-like and strip-like, as well as the interconversion of these, demonstrating high levels of controllability and flexibility.

View Article and Find Full Text PDF

Food fraud has serious consequences including reputational damage to businesses, health and safety risks and lack of consumer confidence. New technologies targeted at ensuring food authenticity has emerged and however, the penetration and diffusion of sophisticated analytical technologies are faced with challenges in the industry. This review is focused on investigating the emerging technologies and strategies for mitigating food fraud and exploring the key barriers to their application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!