A thin-film strain micro-sensor is a cutting force sensor that can be integrated with tools. Its elastic substrate is an important intermediate to transfer the strain generated by the tools during cutting to the resistance-grid-sensitive layer. In this paper, 1060 aluminum is selected as the elastic substrate material and aluminum oxide thin film is selected as the transition layer between the aluminum substrate and the silicon nitride insulating layer. The Stoney correction formula applicable to the residual stress of the aluminum oxide film is derived, and the residual stress of the aluminum oxide film on the aluminum substrate is obtained. The influence of Sputtering pressure, argon flow and negative substrate bias process parameters on the surface quality and sputtering power of the aluminum oxide thin film is discussed. The relationship model between process parameters, surface roughness, and sputtering rate of thin films is established. The sputtering process parameters for preparing an aluminum oxide thin film are optimized. The micro-surface quality of the aluminum oxide thin film obtained before and after the optimization of the process parameters and the surface quality of SiN thin film sputtered on alumina thin film before and after the optimization are compared. It is verified that the optimized process parameters of aluminum oxide film as a transition layer can improve the adhesion between the insulating-layer silicon nitride film and the aluminum substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788627PMC
http://dx.doi.org/10.3390/mi13122115DOI Listing

Publication Analysis

Top Keywords

aluminum oxide
32
thin film
24
process parameters
20
aluminum substrate
16
oxide thin
16
aluminum
13
transition layer
12
oxide film
12
parameters surface
12
film
10

Similar Publications

Ecological ditches serve as one of the important measures for the concentrated infiltration of stormwater in the construction process of sponge cities. Prolonged concentrated infiltration of stormwater can lead to the accumulation of pollutants and pollution risks in the substrate of ecological ditches. In this study, two different substrate ecological ditches were constructed, namely, a combined substrate ecological ditch with zeolite + ceramsite (EA), and a biological substrate ecological ditch (EB).

View Article and Find Full Text PDF

Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

ACS Appl Bio Mater

January 2025

Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.

View Article and Find Full Text PDF

The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (AlO). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the AlO layer and carbon deposition.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!