Despite continuous developments of manufacturing technology for micro-devices and nano-devices, fabrication errors still exist during the manufacturing process. To reduce manufacturing costs and save time, it is necessary to analyze the effects of fabrication errors on the performances of micro-/nano-devices, such as the dielectric metasurface-based metalens. Here, we mainly analyzed the influences of fabrication errors in dielectric metasurface-based metalens, including geometric size and shape of the unit element, on the focusing efficiency and the full width at half maximum (FWHM) values. Simulation results demonstrated that the performance of the metasurface was robust to fabrication errors within a certain range, which provides a theoretical guide for the concrete fabrication processes of dielectric metasurfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787511PMC
http://dx.doi.org/10.3390/mi13122098DOI Listing

Publication Analysis

Top Keywords

fabrication errors
20
effects fabrication
8
errors performances
8
dielectric metasurface-based
8
metasurface-based metalens
8
fabrication
6
errors
5
influencing effects
4
dielectric
4
performances dielectric
4

Similar Publications

Intelligent Thermochromic Heating E-Textile for Personalized Temperature Control in Healthcare.

ACS Appl Mater Interfaces

January 2025

School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region.

Heating electronic textiles (e-textiles) are widely used for thermal comfort and energy conservation, but prolonged heating raises concerns about heat-related illnesses, especially in the elderly. Despite advancements, achieving universal user satisfaction remains difficult due to diverse thermal needs. This paper introduces an intelligent thermochromic heating e-textile with an artificial intelligence (AI)-based temperature control system for optimized personal comfort and color indicators for elderly caregivers.

View Article and Find Full Text PDF

As the demand for computational performance in artificial intelligence (AI) continues to increase, diffractive deep neural networks (DNNs), which can perform AI computing at the speed of light by repeated optical modulation with diffractive optical elements (DOEs), are attracting attention. DOEs are varied in terms of fabrication methods and materials, and among them, volume holographic optical elements (vHOEs) have unique features such as high selectivity and multiplex recordability for wavelength and angle. However, when those are used for DNNs, they suffer from unknown wavefront aberrations compounded by multiple fabrication errors.

View Article and Find Full Text PDF

This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.

View Article and Find Full Text PDF

Modeling Electrowetting on Dielectric for Novel Droplet-Based Microactuation.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT 84602, USA.

Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and allow real-time adjustments to frequency and bandwidth. In this paper, a method is introduced to actuate a panel using EWOD forces.

View Article and Find Full Text PDF

Design and Implementation of a CMOS-MEMS Out-of-Plane Detection Gyroscope.

Micromachines (Basel)

December 2024

Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.

A MEMS gyroscope is a critical sensor in attitude control platforms and inertial navigation systems, which has the advantages of small size, light weight, low energy consumption, high reliability and strong anti-interference capability. This paper presents the design, simulation and fabrication of a Y-axis gyroscope with out-of-plane detection developed using CMOS-MEMS technology. The structural dimensions of the gyroscope were optimized through a multi-objective genetic algorithm, and modal, harmonic response and range simulation analyses were carried out to verify the reasonableness of the design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!