In recent years, environmental problems caused by natural disasters due to global warming have seriously affected human production and life. Fortunately, with the rapid rise of the Internet of Things (IoT) technology and the decreasing power consumption of microelectronic devices, it is possible to set up a multi-node environmental monitoring system. However, regular replacement of conventional chemical batteries for the huge number of microelectronic devices still faces great challenges, especially in remote areas. In this study, we developed a rotating hybrid nanogenerator for wind energy harvesting. Using the output characteristics of triboelectric nanogenerator (TENG) with low frequency and high voltage and electromagnetic generator (EMG) with high frequency and high current, we are able to effectively broaden the output voltage range while shortening the capacitor voltage rising time, thus obtaining energy harvesting at wide frequency wind speed. The TENG adopts the flexible contact method of arch-shaped film to solve the problem of insufficient flexible contact and the short service life of the rotating triboelectric generator. After 80,000 cycles of TENG operation, the maximum output voltage drops by 7.9%, which can maintain a good and stable output. Through experimental tests, the maximum output power of this triboelectric nanogenerator is 0.55 mW at 400 rpm (wind speed of about 8.3 m/s) and TENG part at an external load of 5 MΩ. The maximum output power of the EMG part is 15.5 mW at an external load of 360 Ω. The hybrid nanogenerator can continuously supply power to the anemometer after running for 9 s and 35 s under the simulated wind speed of 8.3 m/s and natural wind speed of 5.6 m/s, respectively. It provides a reference value for solving the power supply problem of low-power environmental monitoring equipment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784831 | PMC |
http://dx.doi.org/10.3390/mi13122053 | DOI Listing |
Sci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
Precision pesticide application mainly relies on canopy volume, resulting in varied application effectiveness across different density areas of orchard trees. This study examined pesticide application effectiveness based on the spray wind, canopy volume, and leaf area within the canopy, providing variable bases for precise regulation of spray wind and pesticide dosage. The study addresses the knowledge gap by utilizing laser detection and ranging (LiDAR) to measure the thickness and leaf area of orchard tree canopies.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310012, China.
The transmission of virus-containing droplets among multiple people in an outdoor environment is seldom evaluated. In this study, an Euler-Lagrange computational fluid dynamics approach was used to investigate the effects of evaporation and the body thermal plume on the dispersion of coughed droplets under various wind conditions, and the infection risk was evaluated for various arrangements of individuals queuing outdoors using virtual manikin models. The evaporation time was longer for larger droplets and in a more humid environment.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
China Merchants Energy Shipping Co., Ltd., Guangdong 518067, China.
The utilization of wind energy can provide auxiliary thrust and hence reduce the fuel consumption as well as carbon dioxide (CO) emissions of wind-assisted ship. However, the use of sails would deviate main engine (ME) from its optimal operating point, which would reduce the engine fuel efficiency. The adoption of the shaft generator (SG) can maintain the ME running at the optimal fuel efficiency point in this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!