Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A Western-style diet that is high in fat and sucrose has been shown to alter DNA methylation and epigenetically modify genes related to health risk in offspring. Here, we investigated the effect of a methyl-donor nutrient (MS) supplemented to a high-fat, high-sucrose (HFS) diet during pregnancy and lactation on vitamin D (VD) status and inflammatory response in offspring. After mating, 10-week-old female Sprague-Dawley (SD) rats ( = 10/group) were randomly assigned to one of the four dietary groups during pregnancy and lactation: (1) control diet (CON), (2) CON with MS (CON-MS), (3) HFS, and (4) HFS with MS (HFS-MS). Weanling offspring (three weeks old) were euthanized and sacrificed ( = 8-10/sex/group). The remaining offspring ( = 10/sex/group) were randomly assigned to either a CON or an HFS diet for 12 weeks and sacrificed at 15 weeks of age. Our results indicated that prenatal MS supplementation, but not postnatal diet, restored low vitamin D status and suppressed elevation of proinflammatory cytokine induced by maternal HFS in the offspring. Furthermore, both prenatal and postnatal diets modulated the abundance of spp. and spp. in the offspring, a shift that was independent of vitamin D status. Collectively, our data support a role for MS in restoring the perturbation of VD status and normalizing maternal HFS-induced inflammation in the offspring. Further investigation is warranted to elucidate the methylation status of VD metabolism-related pathways in the offspring, as well as the immunomodulatory role of vitamin D during the progression of obesity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783000 | PMC |
http://dx.doi.org/10.3390/metabo12121252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!