Novel Magnetic Mixed Cellulose Acetate Matrix Membranes with Oxygen-Enrichment Potential.

Membranes (Basel)

Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.

Published: December 2022

AI Article Synopsis

  • This work introduces innovative magnetic mixed cellulose-based membranes that leverage low-cost cellulose acetate and magnetic fillers without the need for an external magnetic field during production or usage.
  • The membranes incorporate poly(methylmethacrylate) and lithium chloride to enhance their mechanical properties and porosity, while featuring unique iron-nickel alloys with distinct morphologies.
  • Characterization of these membranes shows superior properties, including high coercivity and an effective oxygen transition rate, suggesting their potential in oxygen-enrichment applications compared to conventional membranes.

Article Abstract

This work presents novel magnetic mixed cellulose-based matrix membranes that combine the advantages of a low-cost common polymer matrix, such as cellulose acetate (CA), and a low-cost magnetic filler. Moreover, the presented magnetic mixed CA matrix membranes were fabricated and used without applying an external magnetic field during either the membrane casting or the separating process. Poly(methylmethacrylate) and lithium chloride were used in order to improve the mechanical properties and porosity of the fabricated membranes. The iron-nickel magnetic alloys used were prepared through a simple chemical reduction method with unique morphologies (FeNi-starfish-like and FeNi-necklace-like). The novel magnetic mixed CA matrix membranes fabricated were characterized using different analysis techniques, including SEM, EDX, XRD, TGA, and FTIR-ATR analyses. Furthermore, the static water contact angle, membrane thickness, surface roughness, tensile strength, and membrane porosity (using ethanol and water) were determined. In addition, vibrating sample magnetometer (VSM) analysis was conducted and the oxygen transition rate (OTR) was studied. The magnetic mixed CA matrix membrane containing starfish-like FeNi alloy was characterized by high coercivity (109 Oe) and an efficient 1.271 × 10 cm/(m·s) OTR compared to the blank CA membrane with 19.8 Oe coercivity and no OTR. The effects of the polymeric matrix composition, viscosity, and compatibility with the alloys/fillers used on the structure and performance of the fabricated mixed CA matrix membranes compared to the previously used poly(ethersufone) polymeric matrix are discussed and highlighted. The novel magnetic mixed CA matrix membranes presented have good potential for use in the oxygen-enrichment process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786297PMC
http://dx.doi.org/10.3390/membranes12121259DOI Listing

Publication Analysis

Top Keywords

magnetic mixed
24
matrix membranes
24
mixed matrix
20
novel magnetic
16
matrix
10
cellulose acetate
8
magnetic
8
membranes fabricated
8
polymeric matrix
8
mixed
7

Similar Publications

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Background: The National Institutes of Health (NIH) Toolbox Cognition Battery is increasingly being used as a standardized test to examine cognitive functioning in multicentric studies. This study examines the associations between the NIH Toolbox Cognition Battery composite scores with neuroimaging metrics using data from the Adolescent Brain Cognitive Development (ABCD) study to elucidate the neurobiological and neuroanatomical correlates of these cognitive scores.

Methods: Neuroimaging data from 5290 children (mean age 9.

View Article and Find Full Text PDF

We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks.

View Article and Find Full Text PDF

Guidelines suggest the Liver Imaging Reporting and Data System (LI-RADS) may not be applicable for some populations at risk for hepatocellular carcinoma (HCC). However, data assessing the association of HCC risk factors with LI-RADS major features are lacking. To evaluate whether the association between HCC risk factors and each CT/MRI LI-RADS major feature differs among individuals at-risk for HCC.

View Article and Find Full Text PDF

 - a large-scale dataset of 3D medical shapes for computer vision.

Biomed Tech (Berl)

December 2024

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!