: Our aim was to assess genetic and environmental effects on surface morphological parameters for quantifying anterior cingulate cortex (ACC) changes in middle- to advanced-age East Asians using twin analysis. : Normal twins over 39 years old comprising 37 monozygotic pairs and 17 dizygotic pairs underwent 3-dimensional (3D) T1-weighted imaging of the brain at 3T. Freesurfer-derived ACC parameters including thickness, standard deviation of thickness (STDthickness), volume, surface area, and sulcal morphological parameters (folding, mean, and Gaussian curvatures) were calculated from 3D T1-weighted volume images. Twin analysis with a model involving phenotype variance components of additive genetic effects (A), common environmental effects (C), and unique environmental effects (E) was performed to assess the magnitude of each genetic and environmental influence on parameters. : Most parameters fit best with an AE model. Both thickness (A: left 0.73/right 0.71) and surface area (A: left 0.63/right 0.71) were highly heritable. STDthickness was low to moderately heritable (A: left 0.48/right 0.29). Volume was moderately heritable (A: left 0.37). Folding was low to moderately heritable (A: left 0.44/right 0.28). Mean curvature (A: left 0.37/right 0.65) and Gaussian curvature (A: right 0.79) were moderately to highly heritable. Right volume and left Gaussian curvature fit best with a CE model, indicating a relatively weak contribution of genetic factors to these parameters. : When assessing ACC changes in middle- to advanced-age East Asians, one must keep in mind that thickness and surface area appear to be strongly affected by genetic factors, whereas sulcal morphological parameters tend to involve environmental factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783013 | PMC |
http://dx.doi.org/10.3390/medicina58121855 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!