Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor-Recipient Matching?

Medicina (Kaunas)

Liver Transplantation Unit, General and Digestive Surgery Department, Reina Sofía University Hospital, 14004 Cordoba, Spain.

Published: November 2022

Liver transplantation outcomes have improved in recent years. However, with the emergence of expanded donor criteria, tools to better assist donor-recipient matching have become necessary. Most of the currently proposed scores based on conventional biostatistics are not good classifiers of a problem that is considered "unbalanced." In recent years, the implementation of artificial intelligence in medicine has experienced exponential growth. Deep learning, a branch of artificial intelligence, may be the answer to this classification problem. The ability to handle a large number of variables with speed, objectivity, and multi-objective analysis is one of its advantages. Artificial neural networks and random forests have been the most widely used deep classifiers in this field. This review aims to give a brief overview of D-R matching and its evolution in recent years and how artificial intelligence may be able to provide a solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783019PMC
http://dx.doi.org/10.3390/medicina58121743DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
liver transplantation
8
artificial
5
crossroads liver
4
transplantation artificial
4
intelligence
4
intelligence key
4
key donor-recipient
4
donor-recipient matching?
4
matching? liver
4

Similar Publications

Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.

JMIR Med Inform

January 2025

INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.

Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Background: The role that sleep patterns play in sepsis risk remains poorly understood.

Objectives: The objective was to evaluate the association between various sleep behaviours and the incidence of sepsis.

Methods: In this prospective cohort study, we analysed data from the UK Biobank (UKB).

View Article and Find Full Text PDF

Background: Although artificial intelligence (AI) has gained increasing attention for its potential future impact on clinical practice, medical education has struggled to stay ahead of the developing technology. The question of whether medical education is fully preparing trainees to adapt to potential changes from AI technology in clinical practice remains unanswered, and the influence of AI on medical students' career preferences remains unclear. Understanding the gap between students' interest in and knowledge of AI may help inform the medical curriculum structure.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.

Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!