A Modified Two-Relaxation Thermoelastic Model for a Thermal Shock of Rotating Infinite Medium.

Materials (Basel)

Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Published: December 2022

A unified form of thermoelasticity theory that contains three familiar generalized thermoelasticity. The Lord-Shulman theory, Green-Lindsay theory, and the classical one can be outlined in this form. The field quantities of a rotating/non-rotating half-space with and without the effect of the decay parameter can be obtained due to the unified thermoelasticity theory. The present medium is subjected to a time-dependent thermal shock taking into account that the magnitude of the thermal shock wave is not totally fixed but decaying over time. A special case of a thermal shock waveform with constant magnitude may be considered. The field quantities such as temperature, displacements, and stresses of the present problem are analytically obtained. Some plots of these field variables are presented in two- and three-dimensional illustrations in the context of refined theories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783656PMC
http://dx.doi.org/10.3390/ma15249056DOI Listing

Publication Analysis

Top Keywords

thermal shock
16
thermoelasticity theory
8
field quantities
8
modified two-relaxation
4
two-relaxation thermoelastic
4
thermoelastic model
4
thermal
4
model thermal
4
shock
4
shock rotating
4

Similar Publications

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Heat and Cold Shocks Decrease the Incidence of Diapause in Larvae.

Insects

January 2025

Zoological Institute, Russian Academy of Sciences, Universitetskaya 1, 199034 St. Petersburg, Russia.

Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (-10 °C) and heat (43 °C) shocks experienced for at least 20-30 min significantly reduced the incidence of facultative larval winter diapause in the insect egg parasitoid .

View Article and Find Full Text PDF

Ready-to-eat (RTE) foods are the most common sources of transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety.

View Article and Find Full Text PDF

The formation of an aluminosilicate gel structure made of alkali-activated materials (AAMs) was conducted through an alkali-activation reaction of the solid precursors (fly ash, metakaolin, and wood ash). Fly and wood ash are by-products of the burning process of coal and wood, respectively. Alkali-activated materials of aluminosilicate origin, made from the different ashes, fly and wood, are very attractive research targets and can be applied in various technological fields due to their thermal stability, resistance to thermal shock, high porosity, high sustainability, and finally, low energy loss during production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!