The conventional method of fiber reinforced polymer (FRP) wrapping around concrete columns uses epoxy as the binder along with synthetic or natural fibers such as carbon, glass, basalt, jute, sisal etc. as the reinforcement. However, the thermal stability of epoxy is a major issue in application areas prone to fire exposure. The current work addressed this major drawback of epoxy by modifying it with a nanofiller, such as multiwalled carbon nanotubes (MWCNT), and reinforcing it using basalt and sisal fibers. The effect of exposure to elevated temperature on the behavior of concrete cylinders externally confined with these FRP systems was analyzed. Three types of specimens were considered: unconfined; confined with sisal fiber reinforced polymer (SFRP); and confined with hybrid sisal basalt fiber reinforced polymer (HSBFRP) specimens. The test samples were exposed to elevated temperature regimes of 100 °C, 200 °C, 300 °C and 400 °C for a period of 2 h. The compressive strengths of unconfined specimens were compared with various confined specimens, and from the test results, it was evident that the mechanical and thermal durability of the FRP systems was substantially enhanced by MWCNT incorporation. The reduction in the compressive strength of the FRP-confined specimens varied depending on the type of the confinement. After two hours of exposure at 400 °C, the compressive strength corresponding to the epoxy-HSBFRP-confined specimens were improved by 15%, whereas a 50% increase in strength corresponding to MWCNT-incorporated epoxy-HSBFRP-confined specimens was observed with respect to unconfined unexposed specimens. The MWCNT-modified epoxy-incorporated FRP-confined systems demonstrated superior performance even at elevated temperatures in comparison to unconfined specimens at ambient temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788616 | PMC |
http://dx.doi.org/10.3390/ma15249051 | DOI Listing |
This paper employed a two-color double-pulse femtosecond laser (TDFL) technology for surface processing of carbon fiber reinforced polymers (CFRP). By exploring the changes in ablation thresholds for resin and carbon fiber under varying wavelengths and pulse numbers, optimal wavelength combinations were identified. Adjustments to processing parameters and pulse delay enabled precise removal of the CFRP surface, targeting resin while causing no damage to the underlying carbon fibers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
Fiber-reinforced polymer composites are subjected to harsh environmental conditions over the course of their designed lifespan. Studying the aging process of fiber-reinforced polymer composites exposed to boiling water is critical for improving their durability. This study uses a hand lay-up technique to fabricate composites from glass fiber, bamboo fiber, nanoclay, and epoxy.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
Fiber-reinforced composites (FRCs) possess a remarkable strength-to-weight ratio, making them ideal light-weighing alternative materials of metals used in automotive, aerospace, and outdoor equipment applications, but their recycling is challenging. Chemically recyclable thermoset polymers can enable fiber recovery and reuse; however, challenges remain in the separation and purification of depolymerized small molecules for efficient polymer recycling. To this end, a series of liquid resins for chemically recyclable polymer networks is designed based on phthalic anhydride, a widely produced and inexpensive chemical.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.
Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.
View Article and Find Full Text PDFCarbon fibre reinforced polyetheretherketone (CFR-PEEK) implants have gained interest because of reported biomechanical advantages and radio-lucent properties. The aim of this study was to evaluate the role of CFR-PEEK nails in patients with metastatic bone disease (MBD). We performed a retrospective cohort study evaluating patients with MBD undergoing intramedullary (IM) nailing for prophylaxis or fixation of pathological fractures using CFR- PEEK or titanium implants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!