A group of phyllosilicate nanoscrolls conjoins several hydrosilicate layered compounds with a size mismatch between octahedral and tetrahedral sheets. Among them, synthetic MgSiO(OH) chrysotile nanoscrolls (obtained via the hydrothermal method) possess high thermal stability and mechanical properties, making them prospective composite materials fillers. However, accurate determination of these nano-objects with Young's modulus remains challenging. Here, we report on a study of the mechanical properties evolution of individual synthetic phyllosilicate nanoscrolls after a series of heat treatments, observed with an atomic force microscopy and calculated using the density functional theory. It appears that the Young's modulus, as well as shear deformation's contribution to the nanoscrolls mechanical behavior, can be controlled by heat treatment. The main reason for this is the heat-induced formation of covalent bonding between the adjacent layers, which complicate the shear deformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781576PMC
http://dx.doi.org/10.3390/ma15249023DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
phyllosilicate nanoscrolls
8
young's modulus
8
nanoscrolls
5
thermal treatment
4
treatment impact
4
mechanical
4
impact mechanical
4
properties mgsiooh
4
mgsiooh nanoscrolls
4

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Bioinspired Adhesive Hydrogel Platform with Photothermal Antimicrobial, Antioxidant, and Angiogenic Properties for Whole-Process Management of Diabetic Wounds.

ACS Appl Mater Interfaces

January 2025

Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.

Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.

View Article and Find Full Text PDF

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!