The ternary blended cement with finer slag and silica fume (SF) could improve the packing density (PD) through the filling effect. The excess water (water more than needed for filling into voids between the cement particles) can be released to improve the fresh properties and densify the microstructure which is beneficial for improving the hardened properties. To verify the hypothesis and reveal how and why (cement + slag + SF) the ternary blends could bring such advantages, the binder pastes incorporating slag and SF with various water-to-binder ratios were produced to determine the PD experimentally. To evaluate the optimum water demand (OWD) for maximum wet density, the influence of the dispersion state of the binder on PD was investigated using the wet packing density approach. The effect of PD of various binary and ternary binder systems on water film thickness (WFT), fluidity, setting time, and compressive strength development of cement paste was also investigated. The results show that the ternary blends could improve the PD and decrease the water film thickness (WFT). The enhanced PD and altered WFT are able to increase fluidity and compressive strength. The ternary blends could improve the compressive strengths by increasing PD and exerting nucleation and pozzolanic effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781019 | PMC |
http://dx.doi.org/10.3390/ma15248978 | DOI Listing |
J Colloid Interface Sci
December 2024
Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China.
Hypothesis: Current models for receding contact angles of Cassie-Baxter state droplets on textured hydrophobic substrates are applicable only to a specific structural type, e.g., pillar (above which a droplet has isolated contact line and continuous liquid-vapor interface) or pore (continuous contact line and isolated liquid-vapor interface), signifying a lack of universality.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFNat Commun
January 2025
Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Institute of Nuclear and New Energy Technology, Room A320, Nengke Building, Qinghua Yuan No.1, Beijing, CHINA.
Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!