High filled polylactide/multiwall carbon nanotube composites were subjected to multiple extrusions using single-screw and twin-screw extruders. Samples of the processed composites were characterized by SEM, XRD, Raman, and FTIR spectroscopy. Thermal and rheological properties were investigated by DSC and MFR analyses. Subsequent extrusions resulted in decreased torque and process efficiency, which is a consequence of the viscosity reduction of PLA. Thermal and rheological properties of composites changed after each extrusion as well. As revealed by DSC analyses, cold crystallization temperature showed a tendency to decrease after each process, whereas cold crystallization enthalpy ΔHcc increased significantly. Melt flow rate, which is indicative of the polymer degradation, increased after each extrusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784206 | PMC |
http://dx.doi.org/10.3390/ma15248958 | DOI Listing |
Introduction: This systematic review and meta-analysis assess the impact of the XP-endo Shaper (XPS) on postoperative pain following root canal treatment (RCTs) and compare its efficacy with other endodontic systems.
Methods: A comprehensive literature search was conducted in MEDLINE, Web of Science, Embase, and the Cochrane Library from January 2000 to August 2024. Randomized controlled trials using XPS and reporting postoperative pain were included.
Adv Sci (Weinh)
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.
View Article and Find Full Text PDFJ Control Release
January 2025
Centre de Biophysique Moléculaire, CBM, CNRS UPR4301, Orléans, France. Electronic address:
The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany. Electronic address:
Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
3D Printing and Additive Manufacturing Lab, Faculty of Engineering, Dayalbagh Educational Institute, Agra, India.
For wider adoption of the material extrusion (MatEx)-based additive manufacturing (AM) process, it is important to understand the systems for an improved production rate of the machine. This AM process is the most adaptable and popular due to its wide availability, scalability, compatibility with a broad range of thermoplastic materials, and decreasing cost of personal MatEx-based systems. The performance limits are being explored by many researchers, but none have tried to find the efficacy of different kinematic configurations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!