The application of titanium and its alloys under friction conditions is severely restricted, owing to their poor wear resistance. The paper presents the results of studies of the composition, microstructure, and tribological properties of Ti-TiC-based composite coatings formed on titanium alloys by the electroarc treatment in an aqueous electrolyte using a graphite anode. It has been found that TiC grains have a different stoichiometry and do not contain oxygen. The grain size varies from hundreds of nanometers to tens of micrometers, and the micro-hardness of the treated surface reached the value of 29.5 GPa. The wear resistance of the treated surface increased approximately 40-fold, and the friction coefficient with steel decreased to 0.08-0.3 depending on the friction conditions. The formation of a composite material based on Ti-TiC will contribute to the effective protection of titanium alloys from frictional loads in engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787616PMC
http://dx.doi.org/10.3390/ma15248941DOI Listing

Publication Analysis

Top Keywords

titanium alloys
16
tribological properties
8
composite coatings
8
friction conditions
8
wear resistance
8
treated surface
8
properties ti-tic
4
ti-tic composite
4
titanium
4
coatings titanium
4

Similar Publications

Load-bearing capacity of an experimental dental implant made of Nb-1Zr.

J Mater Sci Mater Med

January 2025

Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.

Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.

View Article and Find Full Text PDF

Purpose: To assess the impact of anodization and instrumentation on titanium abutment surface characteristics (surface roughness and wettability) and biofilm formation (viability and mass).

Materials And Methods: Titanium discs were obtained from pre-milled abutment blanks made of titanium-6aluminum-7niobium alloy. Polished samples were divided into three groups: un-anodized, gold-anodized, and pink-anodized.

View Article and Find Full Text PDF

This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account.

View Article and Find Full Text PDF

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!