One specific group of materials with excellent application potential are powder-compacted soft magnetic materials. These materials have been intensively studied by materials scientists to improve their magnetic properties. This work describes the influence of mechanical smoothing applied to Ni80Fe15Mo5 (wt.%) alloy particle surfaces before the process of compaction. The soft magnetic properties of compacted powders prepared from smoothed and non-smoothed particles were investigated using the following measurements: coercive field, permeability, excess loss, and Barkhausen noise analysis. We found that compactions prepared with smoothed powder particles exhibit a lower value of coercivity (4.80 A/m), higher initial (10,850) and maximum relative permeability (27,700), and low-frequency core losses (1.54 J/m) in comparison with compactions prepared with non-smoothed particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785858 | PMC |
http://dx.doi.org/10.3390/ma15248937 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Int J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Jinduicheng Molybdenum Co., Ltd., Xi'an 710077, China.
The ultrafine MoO powders were prepared by the combination of centrifugal spray drying and calcination in this work. The thermal decomposition behavior of the spherical precursor was studied. The phase constituents, morphologies, particle size, and specific surface areas of MoO powders were characterized at different temperatures.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Aerospace Engineering, Inha University, Incheon 22212, Republic of Korea.
This study aims to assess the feasibility of expanding the powder size distribution (PSD) of Ti-6Al-4V grade 5 powder for LPBF to achieve cost reduction. Parameter optimization to minimize the degradation of mechanical properties due to the expanded particle size distribution was conducted. Mechanical tests for specimens built using optimized parameters revealed minor reductions in strength: 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!